

Noha Abdullateef Abo Al-khair

Moustafa

Yassmin Mahmoud Mahmoud Dief

Kareem Mousaad Ebraheem Ragab

Muhammed Sedeeq Antar

Ahmad Alaa Eldeen El Akabawy

Muhammed Talaat Ali Zidan

Amr Elsaied Muhammed El-Desoky

 Acknowledgment

Firstly, we thank Allah for helping us in this project

We would like to thank our project supervisor

Dr. Sherif Kishk

For his efforts and his great support which helped us to improve our performance and

knowledge through his helpful discussions, generous support and constructive

suggestions while preparing this project.

We also thank the staff members and colleagues in the department of electronics and

communications engineering faculty of engineering, Mansoura University who

supported us in many ways throughout all stages of this project.

 Last but not least, Special thanks for our parents for their endless efforts and

unconditional support in all phases of our life especially in our education which lead

us to this far of education.

m..Project tea

Abstract

 With a renewable source of energy (solar cells) for generating

electricity we will manage the distribution and storing of energy

according to the needs and demands of customers with respect to their

loads, priority and money. By using solar cells, the generating dc power

will be equally distributed to the customers(homes), the user will be able

to record the information about his loads like: power consumption,

duration, number, efficiency of usage, ...etc. And either there is any extra

power to their needs or lack in power, the system will be able to manage

the demand and storage in an efficient and smart way.

 Generating electricity from a renewable source is a good solution to

reduce pollution and is a guarantee to the continuity of electricity. Also

this project will help in some way to reduce population density in Delta

and serves investments in different places in Egypt.

 Managing electricity according to the needs and priorities of

customers using smart, compatible and effective way of pricing and

storage will help in taking decisions either automatically or remotely by

using mobile phone, this process presents an innovative solution to solve

the problem.

Contents

Project team members

Acknowledgement

Abstract

Contents

Chapter (1): Introduction.

 1.1 The Problem

 1.2 Why Micro grids

 1.3 Why DC Micro grids

 1.4 Metrics For Assessing the Impacts of DC Networks and Micro grids

 1.5 DC Micro grid Applications

 1.6 Project Description

Chapter (2): Power Measurement Techniques.

 2.1 Introduction

 2.2 Power measurement in dc circuits

 2.3 Why measuring signal

 2.4 Why measuring power

 2.5 Power measurement types

 2.6 Power measurement history

 2.7 Technical approach

Chapter (3): Communication Techniques.
 3.1 What is Serial?

 3.2 What are important serial characteristics?

 3.3 What Is RS-485?

does the hardware work? How3.4

?How does the software work3.5

 3.6 What is MAX487?

 3.7 Applications among RS-485

 3.8 Code Examples.1 : "using mikroC PRO for PIC"

 3.9 What is I2C?

 3.10 What is the Opertation of I2C?

 3.11 why I2C?

 3.12 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

"I2C Mode" in 18f4620 microcontroller

: "using mikroC PRO for PIC" 2Code Examples.13 3.

Chapter (4): Raspberry Pi.

 4.1 What is the Raspberry Pi?

 4.2 Hardware

 4.3 Ingredients

 4.4 Preparing the Raspberry Pi

 4.5 Basic Networking

 4.6 An Introduction to Python

 Raspberry Pi role in our project 4.7

Chapter (5): Server.

 5.1 server definition

 5.2 server operating systems

 5.3 hardware requirements

 5.4 large servers

 5.5 energy consumption

 5.6 server responsibilty

 5.7 server structure

 5.8 what's cloud computing

 5.9 how cloud computing works

 5.10 Cloud Computing Standards

 5.11 cloud types of servers

 5.12 why cloud computing

 5.13 Raspberry pi

 5.14 hardware

 5.15 operating systems of raspberry pi

 5.16 firebase

 5.17 how does it work?

 5.18 why python?

 5.19 the script

 5.20 database table

 5.21 security of firebase

 5.22 how our server is connecting to our mobile application?

Chapter (6): Android.

 6.1 Overview

 6.2 Introduction

 6.3 Applications

 Features & Specifications: 6.4

 6.5 History of Android

 6.6 What is API level?

 6.7 Android SDK

 6.8 Available Packages

 6.9 App components

 6.10 App Manifest

 6.11 Structure of the Manifest File

 6.12 User Interface

6.13 Firebase

Chapter (7): Conclusion.

 7.1 General Conclusion

 7.2 Future Work

References

Chapter (1):

Introduction

1.1 The Problem:

 The Electricity production is a major problem in Egypt while

Construction of power plants requires a huge budget and take a long time.

"DC Smart Micro Grid" is a small scale system which uses Solar cells to

produce electricity. It is a Smart system that depends on IOT to produce,

manage and utilize electricity that will serve remote areas where no

electricity infrastructure. So it is a fast, permanent, economic and clean

solution for generating electricity.

The claims: Daily power outage in cities due to limited number of power

plants that serve a large number of users, also difficulties in serving new

cities with electricity, The high cost being spent every year to solve this

problem, Egypt has contracted with Siemens to 8 billion euros for the

construction of 3 power plants –as mentioned by the government- and

this large sum for a country suffers economically, Average per capita

electricity in Egypt is 1782 kW, which is less than the world average of

2730 kW.

grids? Why Micro1.2

Micro grid demonstrations and deployments are expanding around the

world. Although goals are specific to each site, these micro grids have

demonstrated the ability to provide higher reliability and higher power

quality than utility power systems and improved energy utilization. The

vast majority of these micro grids are based on AC power transfer

because this has been the traditionally dominant power delivery scheme.

Independently, manufacturers, power system designers and researchers

are demonstrating and deploying DC power distribution systems for

applications where the end-use loads are natively DC, e.g., computers,

solid-state lighting, and building networks. These early DC applications

may provide higher efficiency, added flexibility, reduced capital costs

over their AC counterparts. Further, when onsite renewable generation,

electric vehicles and storage systems are present, DC-based micro grids

may offer additional benefits. Early successes from these efforts raises a

question—can a combination of micro grid concepts and DC distribution

Chapter 1

Introduction

systems provide added benefits beyond what has been achieved

individually?

DC Micro grids?1.3

DC power systems are becoming commonplace and ubiquitous, such as

in building communications and IT networks, building automation and

fire life safety and security systems, on- site renewable power generation,

onsite storage, remote homes, vehicles, vessels, aircraft, and powering

remote communications devices. The basis for AC as the sole platform is

eroding and reevaluation is timely. Compared to AC power, the

distribution of DC power over DC networks has potential to provide

several benefits to equipment manufacturers, electricity customers,

electrical systems, and the environment including but not limited to:

1-higher power system efficiency because of fewer AC-to-DC, DC-to-

AC, or AC-to-AC power conversions in local power systems that include

a significant amount of distributed generation or storage that naturally

produce DC power

2-higher reliability in those same systems because fewer power

conversions require fewer power electronic components, with fewer

potential points of failure

3-lower capital cost because of fewer power electronic components and

potential reductions in conductor cost because DC allows higher current

carrying capability

4-a potential for lower control system complexity and higher survivability

when subject to external and internal disturbances because of the elimina-

tion of synchronization requirements of AC systems.

5-higher power quality and disturbance survivability because of the

power electronics and (potentially) storage buffer between the DC

microgrid and the AC grid.

6-"Managed DC" technologies have communications integrated with

power enabling control and configuration capabilities not present with

today’s AC technology.

Metrics For Assessing the Impacts of DC Networks and 1.4

:Microgrids

Assessing the total impacts (both positive and negative) of a DC

microgrid beyond a traditional AC system or AC microgrid requires a

common set of metrics:

1-Safety and Protection—The ability of the power system to prevent

injury to people and protect equipment from damage

2-Reliability—AC power system reliability is typically measured using

metrics such as System Average Interruption Duration Index (SAIDI) and

System Average Interruption Frequency Index (SAIFI) that measure the

customer-averaged outage duration and interruption frequency,

respectively. This study reinterprets these metrics with a focus on the

reliability of power supplied to individual loads or load classes within

micro grids.

3-Capital Costs—Total equipment and installation costs for the microgrid

as incurred by the owner of the microgrid. The distribution utility that

serves a DC microgrid may also see capital cost benefits. However, it is

not clear how the microgrid owner could monetize these benefits, and

these benefits to the greater system are not considered here.

4-Energy Efficiency—Measured at the system level, the total input

electricity required to serve an end use function. For the ownership model

considered

5-Operating Costs—Present value of total variable cost (primarily energy

use, but also including ancillary revenue streams, maintenance, etc) for a

power system to serve an end use function.

6-Engineering Costs—Site specific engineering costs to integrate the

compo- nents of the microgrid with each other and the microgrid to the

surrounding power systems.

7-Environmental Impact—The total CO2 emissions produced by

marginal electricity generator used to deliver the net electrical needs at

the interface of the microgrid and the local power system.

8-Power Quality—The ability of a AC or DC microgrid to stay within its

respective Computer Business Equipment Manufactures Association

(CBEMA)/Information Technology Industry Council (ITIC) curve for a

given type of disturbance.

9-Resilience—Ability to serve electrical load when the main AC grid is

unavailable for extended periods of time, e.g. for typical multi-day outage

times following major natural disasters such as hurricanes or earthquakes

grid Applications:DC Micro 1.5

Several types of AC and DC microgrids applications were compared. The

initial comparison is done using several generic microgrid architectures to

reveal the importance of and to initially screen the different metrics.

Then, several specific microgrid applications are considered to draw out

possible unique advantages of DC over AC microgrids. These

applications include:

1-DC Microgrid as an Efficient, Low-Cost Platform for Economic

(Steady- State).

2-High Survivability DC Micro grids.

3-Low Power Network with Differentiated and Automatically Evolvable

Power Quality and Reliability.

4-Converting AC Systems to Hybrid AC/DC Systems.

5-Mobile and Remote Applications.

6-Data Center Support Systems.

7-Coupling a DC Micro grid to a HVDC Line.

8-Electric Vehicles for Backup/Emergency Power.

1.6 Project Description:

Our project is divided mainly into these Blocks(they will be explained in

details in the next chapters) :

1) Power system: Which is responsible for generating, storing DC power.

Consists of solar panels(10 watt power source), 18V -boost buck

converter, Voltage regulator 5V and Rechargeable batteries each of 12V.

2) Power meter: Measures Generated power from solar panels, Measures

transmitted power to neighbors, Measures received power from

neighbors.

3) Control system: Controls on loads by 18f877A using RS-485(to

provide long distances), Using Raspberry pi to control/manage homes

communicating by I2C protocol. monitoring on the output power from

solar cells and dissipated power in loads, managing demand and pricing

of power when it is needed.

4) Mobile app: Show all information will be required for user (bill,

charge, etc.), On/off loads, show power trading offers, some advice about

power planning and trading benefits.

5) Server: Is used to analysis data that receives from raspberry pi(data

about loads that comes from home units), tells users about conditions of

their loads, suggests recommenditions, and gives permission to user to

put the price of Electricity.

Chapter (2):

Power

Measurement

Techniques

2.1 Introduction:

In this chapter,the concept of electric power is first introduced, and the

most popular methods and instruments in dc.

Power is defined as the work performed per unit time. So,dimensionally,

it is expressed as joules per second J s-1 .

According to this general definition,electric power is the electric work or

energy dissipated per unit time and,dimensionally. It yields:

Js-1 = JC-1 × Cs-1 = V × A

Where J = joules

S = Seconds

C = Coulombs

V = Volts

A = Ampers

The product voltage times current gives an electrical quantity equivalent

to power.

2.2 Power measurement in DC Circuits

Electric power (P) Dissipated by a load (L) fed by a dc power supply (E)

is the product of the voltage across the load (VL) and the current flowing

in it (𝑰):

Therefore,a power measurement in a dc circuit can be generally carried

out using a voltmeter(V) and an ammeter (A) according to one of

arrangements shown in Figure 1. In the arrangements of Figure 1(a), the

ammeter measures the current flowing into the voltmeter,as well as that

into the load; whereas in the arrangement of figure 1(b), this error is

avoided, but the voltmeter measures the voltage drop across the ammeter

Chapter 2

Power Measurement Techniques

in the addition to that dropping across the load. Thus, both arrangements

give a surplus of power measurements absorbed by the instruments. The

corresponding measurements errors are generally referred to as insertion

errors.

Two arrangement of dc power measurement circuit

According to the notation:

● I current measured by the ammeter. (Figure (a))

● V Voltage measured by the voltmeter. (Figure (b))

● RV,RA internal resistance of the voltmeter and ammeter.

● RL Load Resistance

● Iv current flowing into the voltmeter.(Figure (a))

● VA Voltage drop across the ammeter.(Figure (b))

The following expressions between the measured power and electrical

power P and the measured power V * I are derived by analyzing the

circuits of figures (a) and figure (b) respectively:

P = VL * IL= V * I * (RV -RL/RV) (2.3)

P = VL * IL= V * I * (RL -RA/RL) (2.4)

If:

● Iv compared with I

● VA compared with V

are neglected for the arrangements of figure 1(a) and figure 1(b),

respectively, it approximates yields :

IV / I = RL/RV+RL=RL/RV=0; VA / V = RA /RA+RL=RA /RL = 0; (2.5)

Consequently, measured and measurand power will be coincide.

On the basis, from equations (2.3),(2.4) and (2.5), analytical corrections of

the insertion errors can be easily derived for the arrangement of figures of

(a) and (b), respectively.

The instrument most used in power measurements is the dynamometer. It

is build by two fixed coils, connected in series and positioned coaxially

with space between them ,and a moving coil, placed between the fixed coils

and equipped with a pointer

The torque produced in the dynamometer is proportional to the product

ofcurrent flowing into the fixed coils times that in moving coil. The fixed

coils,generally referred to as current coils, carry the load current while

moving the coil, generally referred to as voltage coil ,carries a current that

tage across the ,to the vol Vis proportional,via the multiplier resistor R

load resistor.

RL as a consequence, the deflection of a moving coil is proportional to

the power dissipated into the load.

Power measurement with a dynamometer. (a) working principle;

(b)measurement circuit

As for the case of figure (a), insertion errors are also present in the

dynamometer power measurement. In particular, by connecting the

voltage coil between A and C (Figure (b)), the current coils carry the

surplus current flowing into the voltage coil. consequently , the power PL

dissipated in the load can be obtained by the dynamometer reading P as:

PL = P- V2/R’
V

Where R’
V is the resistance of the voltage circuit (R

’
V = RV+RVC) where

RVC is the resistance of the voltage coil. By connecting the moving coil

between B and C, this current error can be avoided, but now the voltage

coil measures the surplus voltage across the current coil. In this case, the

corrected value is:

PL = P - I2 Rc

Where Rc is the resistance of current coil.

2.3 Why do we measure signal levels?

A component or system's output signal level is often the critical factor in

the design and ultimately the purchase and performance of almost all RF

and microwave equipment. Measurement of the signal level is critical at

every system level, from the overall system performance to the

fundamental devices. The large number of signal measurements and their

importance to system performance dictates that the measurement

equipment and techniques be accurate, repeatable, traceable, and

convenient. In a system, each component in a signal chain must receive

the proper signal level from the previous component and pass the proper

signal level on to the succeeding component. If the output signal level

becomes too low, the signal becomes obscured in noise. If the signal level

becomes too high, though, the performance goes nonlinear and distortion

results. Or worse!

2.4 why measure power ?

The first question is why measure power at all, rather than voltage? While

it is true that very accurate and traceable voltage measurements can be

performed at DC, this becomes more difficult with AC. At audio and low

RF frequencies (below about 10 MHz), it can be practical to individually

measure the current and voltage of a signal. As frequency increases, this

becomes more difficult, and a power measurement is a simpler and more

accurate method of measuring a signal’s amplitude.

As RF signals approach microwave frequencies, the propagation

wavelength in conductors becomes much smaller, and signal reflections,

standing waves, and impedance mismatch can all become very significant

error sources. A properly designed power detector can minimize these

effects and allow accurate, repeatable amplitude measurements. For these

reasons, POWER has been adopted as the primary amplitude

measurement quantity of any RF or microwave signal.

There are many reasons it may be necessary to measure RF power. The

most common needs are for proof-of-design, regulatory, safety, system

efficiency, and component protection purposes, but there are thousands of

unique applications for which RF power measurement is required or

helpful.

In the communication and wireless industries, there are usually a number

of regulatory specifications that must be met by any transmitting device,

and maximum transmitted power is almost always near the top of the list.

The FCC and other regulatory agencies responsible for wireless

transmissions place strict limits on how much power may be radiated in

specific bands to ensure that devices do not cause unacceptable

interference to others. Although the real need is usually to limit the actual

radiated energy, the more common and practical regulatory requirement

is to specify the maximum power which may be delivered to the

transmitting antenna.

In addition to the regulatory issues, transmitter power needs to be limited

in many communication systems to allow optimum use of wireless

spectral and geographical space. If two transmitting devices are operating

in the same frequency band and physical proximity, receivers can have a

more difficult time discriminating the signals if one signal is much too

large relative to the other. Even in commercial broadcast, the transmitting

power of each broadcast site is licensed and must be constantly monitored

to ensure that operators do not interfere with other stations occupying the

same or nearby frequencies in neighboring cities.

Controlling transmission power is particularly necessary in modern

cellular networks, where operators constantly strive to maximize system

capacity and throughput. Many modern wireless protocols use some form

of multiplexing, in which multiple mobile transmitters (for example,

cellular handsets) must simultaneously transmit data to a common base

station. In these situations, it is necessary to carefully monitor and control

the transmitted power of each device so that their signals arrive at the

base station with approximately equal amplitudes. If one device on a

channel has too much power, it will “step on” the transmission of other

devices sharing that channel, and make it impossible for the base station

to decode those signals.

Another power control issue in cellular systems is due to the close

proximity of base stations in congested areas. If a device is transmitting

with too much power, it will not only interfere with signals in its own

cell, but can possibly interfere with the transmissions of devices in

neighboring cells. Mobile devices for these systems typically implement

both open-loop and closed-loop, real-time power control of their

transmitters. Without accurate power control of every single device

within range of a base station, cellular network capacity can be severely

degraded.

Too much power has other dangers as well. For higher power systems,

too much RF power can present biological hazards to personnel and

animals. Safety limits are often placed on transmitted power to protect

users and bystanders from the dangers of high-power RF radiation. A

good example of the potential dangers of RF energy is a common

microwave oven, which can severely burn human flesh just as easily as it

can heat a meal. Radio and RADAR transmitters operate at still higher

power levels, and present their own special hazards. It is hypothesized

that even low-power RF transmitting devices such as cell phones may

have potential to cause lasting biological effects. In all of these cases,

there will be times when the actual power present must be monitored to

ensure compliance with safety standards or guidelines.

Measuring power is important for circuit designers as well. Any

electronic device can be overloaded or damaged by too high a signal. Too

much steady-state power can cause heating effects and destroy passive

and active components alike. Too much instantaneous (“peak”) power

can overstress semiconductor devices, or cause dielectric breakdown or

arcing in passive components, connectors, and cables. But even at power

levels well below the damage threshold of the circuit components,

excessive power can cause overload of system, clipping, distortion, data

loss or a number of other adverse effects. Similarly, insufficient power

can cause a signal to fall below the noise floor of a transmission system,

again resulting in signal degradation or loss.

2.5 Power measurements types:

There are three different types of power measurement, Average, peak,

and time gated power measurements. Average power provides average

power delivered over several cycles and typically is implied when talking

about "power". Peak power is the maximum instantaneous power and is

required on many of today’s complex wireless modulation systems.

Finally, Time Gated power measurements allow both peak and average

measurements to be made in the time domain, which is of particular

interest to TDMA systems such as GSM.

Although a variety of instruments measure power, the most accurate

instrument is a power meter and a sensor. The sensor is an RF power-to-

voltage transducer. The power meter displays the detected voltage as a

value of power in log (dBm) or linear (watts) units. Typical power meter

instrumentation accuracy will be in the order of hundredths of a dB, while

other instruments (i.e., spectrum analyzers, network analyzers) will have

power measurement accuracies in the tenths of dBs or more. We will

discuss the overall uncertainty of power measurements in more detail

later on in this presentation. One of the main differences between the

instruments is that of frequency selective measurements. Frequency

selective measurements attempt to determine the power within a specified

bandwidth. The traditional Power Meter is not frequency selective in that

it measures the average power over the full frequency range of the sensor

and will include the power of the carrier as well as any harmonics which

may be generated. A Spectrum Analyzer provides a frequency selective

measurement since it measures in a particular Resolution Bandwidth. The

lack of frequency selectivity is the main reason that Power Meters

measure down to around -70 dBm and instruments such as a spectrum

analyzer can measure much lower than this if narrow resolution

bandwidths are used.

Average Power provides the average power delivered over several cycles

and this is the most common power measurement performed today.

Average power is defined as the energy transfer rate averaged over many

periods of the lowest frequency in the signal. Average power is also

defined as the power averaged over a specified time interval.

For an AM signal, averaging is taken over many modulation cycles, and

for a pulse modulated signal the signal is averaged over several pulse

repetitions. Of all the power measurements, average power is the most

frequently measured because convenient measurement equipment with

highly accurate and traceable specifications is available. Additional

waveform information can sometimes be calculated from average power

measurements if certain waveform characteristics are known. If, for

example, the duty cycle of a rectangular pulsed signal is known, then

peak power can be found from the average power measurement by the

equation:

Note that the peak power here is only applicable for a true rectangular pulse

with no overshoot present.

Let's now look at the types of hardware, both sensors and meters, that are

used in average power

measurements.

The basic idea behind a power sensor is to convert high frequency power

to a DC or low frequency signal that the power meter can then measure and

relate to a certain RF power level. The three main types of sensors are

thermistors, thermocouples, and diode detectors. There are benefits and

limitations associated with each type of sensor. We will briefly go into the

theory of each type and then talk about the advantages and limitations

associated with each sensor.

Shown here is the basic power measurements method. Both thermocouple

and diode detector mounts generate voltages on the order of 100 nV.

Such small voltages require choppers, AC amplifiers, and synchronous

detectors to accurately detect. Power measurements with both kinds of

sensors need a power-reference oscillator with a precisely known power

output to adjust the calibration of the power meter to fit the particular

sensor being used.

The DC output from either the thermocouple or the diode detector is very

low-level (on the order of nV or V),so it is difficult to transmit on an

ordinary cable because small, undesired thermocouple effects affect the

measurement. For this reason Agilent includes the low-level DC circuitry

in the power sensor, so only relatively high-level signals appear on the

cable. To handle such low DC voltage, you must "chop" the signal to

form a square wave, amplify this with an AC-coupled system, then

synchronously detect the high-level AC. The chopper and first AC

amplifier are included in the power sensor itself.

The DC output from either the thermocouple or the diode detector is very

low-level (on the order of nV or V),so it is difficult to transmit on an

ordinary cable because small, undesired thermocouple effects affect the

measurement. For this reason Agilent includes the low-level DC circuitry

in the power sensor, so only relatively high-level signals appear on the

cable. To handle such low DC voltage, you must "chop" the signal to

form a square wave, amplify this with an AC-coupled

system, then synchronously detect the high-level AC. The chopper and

first AC amplifier are included in the power sensor itself.

Thermistors offer high accuracy, but have a more limited operating range

than a thermocouple or diode detector sensor. Thermistor mount

specifications are for the range from -20 dBm to +10 dBm.

Thermocouples cover a very large range of powers. Their true square-law

region is from -30 dBm to +20dBm, and with an attenuator can operate

up to +44 dBm. Three families of thermocouple sensors cover the

complete -30 to +44 dBm range. The A- Series covers -30 to +20 dBm,

the H-Series covers from -10 to+35 dBm, and the B-Series covers from 0

to +44 dBm.

Diode detectors (D-Series) have the best sensitivity, allowing them to

work well below -20 dBm (stated range is -70 to -20 dBm), but above -20

dBm they begin to deviate substantially from the square-law detection

region.

The wide dynamic range power sensors are diode sensors and can provide

up to 90dB dynamic range. They either work by correcting for the

deviation (CW Power Sensors) or by using the two path technique to

allow modulated measurements. Wide dynamic range measurements can

be made up to a maximum power of +44dBm.

Thermocouple technology is the result of combining thin-film and

semiconductor technologies to give a very accurate, rugged, and

reproducible power sensor. Thermocouple sensors have been the

detection technology of choice for sensing RF and microwave power

since their introduction in 1974. The two main reasons for this are:

1) they operate over a wider power range

2) they are more rugged.

Since thermocouples, like thermistors, always respond to the true power

of a signal, they are ideal for all types of signal formats from CW to

complex digital phase modulations.

The above example shows what happens when a metal rod is heated at

one end. As a result of increased thermal agitation, many additional

electrons become free from their atoms on the left end. The increased free

electron density on the left causes diffusion toward the right. Each

electron migrating to the right leaves behind a positive ion. That ion

attracts the electron back to the left with a force given by Coulomb's Law.

Equilibrium occurs when the rightward diffusion force equals the

leftward force of Coulomb's law. The leftward force can be represented

by an electric field pointing toward the right. The electric field gives rise

to a voltage source.

Thermocouple sensors are based on the fact that a metal generates a

voltage due to temperature differences between a hot and a cold junction

and that different metals will create different voltages. A thermocouple is

based on the idea of this difference in voltages between the two metals. If

the two metals are put together in a closed circuit, current will flow due to

the difference in the voltages. If the loop remains closed, current will

flow as long as the two junctions remain at different temperatures. In a

thermocouple, the loop is broken and a sensitive voltmeter is inserted to

measure the net thermoelectric voltage of the loop. The voltage can be

related to a temperature change which can be related to the increased

temperature due to RF power incident upon the thermocouple element.

Since the voltage produced in a thermocouple is on the order of

microvolts, many pairs of junctions of thermocouples are connected in

series so that the first junction of each pair is exposed to heat and the

second junction is not. In this way the net voltage produced by one

thermocouple adds to that of the next,and the next, and so on, yielding a

larger thermoelectric output. Such a series connection of thermocouples is

called a thermopile. This larger signal makes for simpler sensing

circuitry.

One way to implement thermocouple technology to make power sensors

is like the method shown above.The sensor contains two identical

thermocouples on one chip, electrically connected as in the figure. For

DC, the thermocouples are in series, while at RF frequencies they are in

parallel. The two thermocouples in parallel form a 50 ohm termination for

the RF transmission line.

Thermocouple measurements are open-loop, meaning an external

reference source is necessary to match a particular sensor with its

associated meter. The power reference is contained in the power meter.

To verify the accuracy of the system, or adjust for a sensor of different

sensitivity, the user connects the thermocouple sensor to the power-

reference output and, using a calibration adjustment, sets the meter to

display 1.00 mW. This calibration effectively transforms the system to a

closed-loop substitution-type system, and provides confidence in

traceability back to internal company standards or NIST standards.

2.6 Power Measurement History:

Since the late 1800s, when Nikola Tesla first demonstrated wireless

transmission, there has been a need to measure the output of RF circuits.

A major focus of Telsa’s work was wireless transmission of electrical

power, so he was often working in the megawatt range, and a relative

indication of power was the discharge length of the “RF lightning” he

produced. For obvious reasons, there was little incentive to attempt any

sort of “contact” measurement!

Around 1888, an Austrian physicist named Ernst Lecher developed his

“wires” technique as a method for measuring the frequency of an RF or

microwave oscillator. The apparatus, often known as Lecher Wires,

consisted of two parallel rods or wires, held a constant distance apart,

with a sliding short circuit between them. The wires formed an RF

transmission line, and by moving the shorting bar, Lecher could create

standing waves in the line, resulting in a series of the peaks and nulls. By

measuring the physical distance between two peaks or two nulls, the

signal’s wavelength in the transmission line, and thus its frequency could

be calculated.

Initially, Lecher used a simple incandescent light bulb across the lines as

power detector to locate the peaks and nulls. The apparent brightness of

the bulb at the peaks also gave him a rough indication of the oscillator’s

output amplitude. One of the problems with using a bulb, however, was

that the low (and variable) impedance of its filament changed the line’s

characteristics, and could affect the resonant frequency and output

amplitude of the oscillator.

This was addressed by substituting a high-impedance, gas-discharge glow

tube for the incandescent bulb. The glass tube was laid directly across the

wires, and the field from a medium-voltage RF signal was adequate to

excite a glow discharge in the gas tube. This didn’t change the tank

impedance as much, while keeping it easy to visually determine the peak

and null locations as the tube was slid up and down the wires. Later, a

neon bulb was used, but the higher striking voltage of neon made the

nulls difficult to locate precisely.

In 1933, H.V. Noble, a Westinghouse engineer, refined some of Tesla’s

research, and was able to transmit several hundred watts at 100 MHz a

distance of ten meters or so. This wireless RF power transmission was

demonstrated at the Chicago World’s Fair at the Westinghouse exhibit.

His frequencies were low enough that the transmitted and received signal

voltages could be directly measured by conventional electronic devices of

the day – vacuum tube and cat’s whisker detectors. At higher frequencies,

however, these simple methods did not work as well – the tubes and cat’s

whiskers of the day simply lost rectification efficiency and repeatability.

The Varian brothers used another indicator technique in the late 1930s

during their development of the Klystron. They drilled a small hole in the

side of the resonant cavity and put a fluorescent screen next to it. A glow

would indicate that the device was oscillating, and the brightness gave a

very rough power indication as adjustments were made. In fact some

small transmitters manufactured into the 1960s had a small incandescent

or neon lamp in the final tank circuit for tuning. The tank was tuned for

maximum lamp brightness. These techniques all fall more under the

category of RF indicators than actual measurement instruments.

The water-flow calorimeter, a common device for other uses, was adapted

for higher power RF measurements to measure the heating effect of RF

energy, and found its way into use anywhere you could install a “dummy

load.” By monitoring flow of water and temperature rise as it cooled the

load, it was simple to measure long-term average power dissipated by the

load.

The thermocouple is one of the oldest ways of directly measuring low RF

power levels. This is done by measuring its heating effect upon a load,

and is still in common use today for the measurement of “true-RMS”

power. Thermocouple RF ammeters have been in use since before 1930

but were restricted to the lower frequencies. It was not until the 1970s

that thermocouples were developed that allowed their use as sensors in

the VHF and Microwave range.

In later years, thermocouples and semiconductor diodes improved both in

sensitivity and high-frequency ability. By the mid 1940s, the fragile,

galena-based “cat-whisker” detectors were being replaced by stable,

durable packaged diodes that could be calibrated against known

standards, and used for more general-purpose RF power measurement.

Diode-based power measurement was further improved in the 50s and

60s, and Boonton Electronics made some notable contributions to the

industry, initially in RF voltage measurement. The Model 91B was

introduced in 1958 and could measure from below one millivolt to

several volts. With a suitable termination, this yielded a calibrated

dynamic range of about -50 dBm to +22 dBm over a frequency range of

200 kHz to 500 MHz.

RF voltmeters and power meters continued to evolve throughout the 70s

with the application of digital and microprocessor technology, but these

were all “average-only” instruments and few had any ability to quantify

peak measurements. When a pulsed signal had to be characterized, the

accepted technique was to use an oscilloscope and crystal detector to

view the waveform in a qualitative fashion, and perform an average

power measurement on the composite signal using either a CW power

meter or a higher power measurement such as a calorimeter.

The “slideback wattmeter” used a diode detector, and substituted a DC

voltage for the RF pulse while the pulse was off, giving a way to measure

the pulse’s amplitude while compensating for duty cycle. However, a

more common approach was to simply characterize a diode detector to

correct for its pulse response – a technique pioneered by Boonton Radio,

a local company that provided a great deal of technology to Boonton

Electronics.

The modern realization of the peak power meter came into being in the

early 1990s. Boonton Electronics, Hewlett Packard (later Agilent

Technologies) and Wavetek all introduced instruments that were

specifically designed to measure pulsed or modulated signals, and correct

for nonlinear response of the detector diodes in real time. These

instruments have evolved over time with the application of better

detectors and high-speed digital signal processing technology.

2.7 First practical approach :

Digital dc watt meter using pic microcontroller is used to measure dc

power of dc circuits. Voltage and current sensors are used in this project.

Voltage and current sensors are interfaced with microcontroller.

-Voltage sensor: is used to measure voltage across circuit or load.

-Current sensor: is used to measure current passing through load,

Voltage divider circuit is used to measure high voltage. because

microcontroller can not read high voltage or voltage more than 5 volt.

Shunt resistor is used as a current sensor. Shunt resistor is used to convert

current into voltage form. Because microcontroller does not understand

current. Microcontroller can read voltage directly.

-Liquid crystal display (LCD): is used to show measured value of dc

power.

-Circuit diagram of dc power meter: is given below. 0.47 resistor is

used as a shunt resistor. Resistor R1 and R4 is used as a voltage divider.

LCD displays measured DC power by fetching its value from

PIC16F877A microcontroller. 8MHz crystal is used to operate

PIC16F877A microcontroller. DC ammeter used in below circuit is just

for simulation purpose

.

-DC power meter working: As we have mentioned above this projects

consists of three main components. Details of these components is given

below:

● Digital Ammeter: is designed using shunt resistor. R6 0.46 Shunt

resistor is used to measure current flowing through a load. Shunt

resistor converts current passing through it into voltage. This

voltage is measured with the help of analog channel AN1 of

PIC16F877A microcontroller. Measured voltage converted back

http://microcontrollerslab.com/digital-voltmeter-using-pic-microcontroller/

into current using ohm’s law formula 𝐼 = 𝑉/𝑅. because value of

shunt resistor and measured voltage is known.

● Digital voltmeter: is used to measure voltage across load. Voltage

divider is used to step down voltage less than 5 volt. Voltage across

R4 resistor of voltage divider is measured with the help of of analog

channel ANO of PIC16F877A microcontroller. Measured voltage

converted back into actual voltage by multiplying it the opposite

formula of voltage divider.

● PIC16F877A microcontroller: all mathematical calculations are

done through programming of pic . it read current and voltages

through ADC. As you know dc power is just a product of voltage

and current.

DC power = Voltage * Current

Dc power meter code :

Sbit LCD_RS at RB4_bit;

Sbit LCD_EN at RB5_bit;

Sbit LCD_D4 at RB0_bit;

Sbit LCD_D5 at RB1_bit;

Sbit LCD_D6 at RB2_bit;

Sbit LCD_D7 at RB3_bit;

Sbit LCD_RS_Direction at TRISB4_bit;

Sbit LCD_EN_Direction at TRISB5_bit;

Sbit LCD_D4_Direction at TRISB0_bit;

Sbit LCD_D5_Direction at TRISB1_bit;

Sbit LCD_D6_Direction at TRISB2_bit;

Sbit LCD_D7_Direction at TRISB3_bit;

Float voltage, current, power ;

Char power [4];

Void main () {

 PORTA = 0XFF;

 TRISA = 0XFF;

 PORTB = 0;

 PORTA = 0;

 LCD_init ();

 ADC_init();

 LCD_cmd(_LCD_CURSER_OFF);

 LCD_cmd(_LCD_CLEAR);

 LCD_out(1,1,”power meter’);

 delay _ms(1000);

 while(1)

 {

 Voltage = ADC_Read(0);

 Voltage = (voltage*5*10) / 1024;

 Current = ADC_Read(1);

 Current = (current * 0.00489) / 0.047;

 Power = voltage * current ;

 inttostr(power,pwr);

 Lcd_out(2,1,”power= “ ;

 Lcd_out(2,8,Ltrim(pwr));

 Lcd_out(2,11, “W”) ;

 }

 }

● Voltage = adc_read(0) : this function reads analog value of voltage

and converts it into binary value of voltage.

● Voltage = (voltage*5*10) / (1024)) : it converts binary value back

into actual voltage by multiplying it with ADC resolution factor

and voltage divider inverse.

● Current = adc_read(1) ; this function reads analog value of voltage

across shunt resistor.

● Current = (current * 0.00489) / 0.47) : this function converts binary

value of voltage across shunt resistor into current.

● Power = voltage * current : it’s just a multiplication of measured

voltage and measured current.

● inttostr(power,pwr) : it converts power value into string.

*Dc power meter Simulation :

Disadvantages of this practical approach :

1. Can’t deal with very low power and very high power measurement

.

2. Inaccurate voltage measuring .

3. Inaccurate current measuring due to losses in shunt resistor.

4. Very small range of power measurement.

Another way to perform ADC in power meter :

Using register programming instead of using built in library in mikroC

programming, it is consist of Four main registers :

● ADCON0 : A/D CONTROL REGISTER 0

It consist of 7 bits and each of them have specific function as follows :

Bit 7 unimplemented: read as 0

Bit 6-2 CHS<4:0> Analog channel select bits

00000 = AN0

00001 = AN1

00010 = AN2

00011 = AN3

00100 = AN4

00101 = AN5

00110 = AN6

00111 = AN7

Bit 1 GO/DONE: A/D Conversion status bit

1 = A/D conversion cycle in progress.Setting this bit starts an A/D

conversion cycle

This bit is automatically cleared by hardware when the A/D

conversion has completed.

0 = A/D conversion completed/not in progress.

Bit 0 ADON: ADC Enable bit

1 = ADC is enabled

0 = ADC is disabled and consumes no operating current.

● ADCON1: A/D CONTROL REGISTER 1

Also consist of 7 bits and each of them have specific function as follows :

Bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six Most Significant bits of ADRESH

are set to ‘0’ when the conversion result is loaded.

0 = Left justified. Six Least Significant bits of ADRESL are

set to ‘0’ when the

conversion result is loaded.

Bit 6-4 ADCS<2:0>: A/D Conversion Clock Select bits

000 =FOSC/2

001 =FOSC/8

010 =FOSC/32

011 =FRC (clock supplied from a dedicated RC oscillator)

100 =FOSC/4

101 =FOSC/16

110 =FOSC/64

111 =FRC (clock supplied from a dedicated RC oscillator)

Bit 3-2 Unimplemented: Read as ‘0’

Bit 1-0 ADPREF<1:0>: A/D Positive Voltage Reference

Configuration bits

00 =VREF+ is connected to AVDD

01 = Reserved

10 =VREF+ is connected to external VREF+(1)

11 =VREF+ is connected to internal Fixed Voltage

Reference (FVR) module(1).

● ADRES Registers : contain results of ADC

ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM

= 1

Bit 7-2 Reserved: Do not use.

Bit 1-0 ADRES<9:8>: ADC Result Register bits Upper two

bits of 10-bit conversion result.

ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower eight

bits of 10-bit conversion result.

Chapter (3):

Communication

Techniques

3.1 What is Serial?

The concept of serial communication is simple. The serial port sends and

receives bytes of information one bit at a time. This is slower than

parallel communication, which allows the transmission of an entire byte

at once; however, it is simpler and can be used over longer distances. For

example, the IEEE 488 specifications for parallel communication state

that the cabling between equipment can be no more than 20 meters total,

with no more than 2 meters between any two devices; serial can extend as

much as 1200 meters.

Typically, serial is used to transmit ASCII data. Communication is

completed using 3 transmission lines: (1) Ground, (2) Transmit, and (3)

Receive. Since serial is asynchronous, the port is able to transmit data on

one line while receiving data on another. This is referred to as Full-

Duplex transmission. Other lines are available for handshaking, but are

not required.

3.2 What are important serial characteristics?

 They are baud rate, data bits, stop bits, and parity. For two ports to

communicate, these parameters must match:

a. Baud rate is a speed measurement for communication. It indicates the

number of bit transfers per second. For example, 300 baud is 300 bits

per second. When we refer to a clock cycle, in the context of serial,

we mean the baud rate. For example, if the protocol calls for a 4800

baud rate, then the clock is running at 4800Hz. This means that the

serial port is sampling the data line at 4800Hz. Common baud rates

for telephone lines are 14400, 28800, and 33600. Baud rates greater

than these are possible, but these rates reduce the distance by which

devices can be separated. These high baud rates are used for device

communication where the devices are located near one another.

b. Data bits are a measurement of the actual data bits in a transmission.

When the computer sends a packet of information, the amount of

actual data may not be a full 8 bits. Standard values for the data

packets are 5, 7, and 8 bits. Which setting you choose depends on

what information you are transferring. For example, standard ASCII

has values from 0 to 127 (7 bits). Extended ASCII uses 0 to 255 (8

bits). If the data being transferred is simple text (standard ASCII),

Chapter 3

Communication Techniques

then sending 7 bits of data per packet is sufficient for communication.

A packet refers to a single byte transfer, including start/stop bits, data

bits, and parity. Since the number of actual bits depend on the

protocol selected, the term packet is used to cover all instances.

c. Stop bits are used to signal the end of communication for a single

packet. Typical values are 1, 1.5, and 2 bits. Since the data is clocked

across the lines and each device has its own clock, it is possible for the

two devices to become slightly out of sync. Therefore, the stop bits

not only indicate the end of transmission but also give the computers

some room for error in the clock speeds. The more bits that are used

for stop bits, the greater the lenience in synchronizing the different

clocks, but the slower the data transmission rate.

d. Parity is a simple form of error checking that is used in serial

communication. There are four types of parity: even, odd, marked, and

spaced. The option of using no parity is also available. For even and

odd parity, the serial port will set the parity bit (the last bit after the

data bits) to a value to ensure that the transmission has an even or odd

number of logic high bits. For example, if the data was 011, then for

even parity, the parity bit would be 0 to keep the number of logic high

bits even. If the parity was odd, then the parity bit would be 1,

resulting in 3 logic high bits. Marked and spaced parity does not

actually check the data bits, but simply sets the parity bit high for

marked parity or low for spaced parity. This allows the receiving

device to know the state of a bit which enables the device to determine

if noise is corrupting the data or if the transmitting and receiving

devices' clocks are out of sync.

*To connect between meter circuits(Loads) of each home and the
Master microcontroller(18f4620) we use serial communication
protocol: RS-485

 3.3 What Is RS-485?

RS-485 (EIA-485 Standard) is an improvement over serial

communication RS-422, because it increases the number of devices from

10 to 32 and defines the electrical characteristics necessary to ensure

adequate signal voltages under maximum load. With this enhanced multi-

drop capability, you can create networks of devices connected to a single

RS-485 serial port. The noise immunity and multi-drop capability make

RS-485 the serial connection of choice in industrial applications requiring

many distributed devices networked to a PC or other controller for data

collection, HMI, or other operations. RS-485 is a superset of RS-422;

thus, all RS-422 devices may be controlled by RS-485. RS-485 hardware

may be used for serial communication with up to 4000 feet of cable. With

Maximum Data Rate (at max cable length) equal 10 Mbit/s.

3.4 How does the hardware work?
Data is transmitted differentially on two wires twisted together, referred

to as a "twisted pair." The properties of differential signals provide high

noise immunity and long distance capabilities(with twisted-pair wire

reduces two major sources of problems for designers of high-speed long-

distance networks: radiated EMI and received EMI.). A 485 network can

be configured two ways, "two-wire" or "four-wire." In a "two-wire"

network the transmitter and receiver of each device are connected to a

twisted pair. "Four-wire" networks have one master port with the

transmitter connected to each of the "slave" receivers on one twisted pair.

The "slave" transmitters are all connected to the "master" receiver on a

second twisted pair. In either configuration, devices are addressable,

allowing each node to be communicated to independently. Only one

device can drive the line at a time, so drivers must be put into a high-

impedance mode (tri-state) when they are not in use. Some RS-485

hardware handles this automatically. In other cases, the 485 device

software must use a control line to handle the driver. A consequence of

tri-stating the drivers is a delay between the end of a transmission and

when the driver is tri-stated. This turn-around delay is an important part

of a two-wire network because during that time no other transmissions

can occur (not the case in a four-wire configuration). An ideal delay is the

length of one character at the current baud rate (i.e. 1 ms at 9600 baud).

The device manufacturer should be able to supply information on the

delay for their products.

Two-wire or four-wire? Two-wire 485 networks have the advantage of

lower wiring costs and the ability for nodes to talk amongst themselves.

On the downside, two-wire mode is limited to half-duplex and requires

attention to turn-around delay. Four-wire networks allow full-duplex

operation, but are limited to master-slave situations (i.e. a "master" node

requests information from individual "slave" nodes). "Slave" nodes

cannot communicate with each other. Remember when ordering your

cable, "two-wire" is really two wires + ground, and "four-wire" is really

four wires + ground.

3.5 How does the software work?

 485 software handles addressing, turn-around delay, and possibly the

driver tri-state features of 485. Determine before any purchase whether

your software handles these features. Remember, too much or too little

turn-around delay can cause troubleshooting fits, and delay should be a

function of baud rate.

*RS-485 Library in mikroC PRO for PIC:

RS-485 is a multipoint communication which allows multiple devices to

be connected to a single bus. The mikroC PRO for PIC provides a set of

library routines for work with RS485 system using Master/Slave

architecture. Master and Slave devices interchange packets of

information. Each of these packets contains synchronization bytes, CRC

byte, address byte and the data. Each Slave has unique address and

receives only packets addressed to it. The Slave can never initiate

communication.

It is the user’s responsibility to ensure that only one device transmits via

485 bus at a time.

The RS-485 routines require the UART module. Pins of UART need to

be attached to RS-485 interface transceiver, such as LTC485(RS-485

interface) or similar.

In this project we use MAX487.

3.6 What is MAX487?

It is a low-power transceiver for RS-485, with these features:

-Low Quiescent current.

-(-7V) to (+12V) common-mode input voltage range.

-Three state output.

-Operates from a single 5V supply.

-Current limiting and thermal shutdown for driver overload protection.

Pin Layout

Pin Description

Pin

Number
Description

1 RO - Receiver Output

2 RE - Receiver Output Enable

3 DE - Driver Output Enable

4 DI - Driver Input

5 GND - Ground

6
A - Non-Inverting Receiver Input and Driver

Output

7 B - Inverting Receiver Input and Driver Output

8 Vcc - +5V Positive Supply

3.7 Applications among RS-485:

RS-485 signals are used in a wide range of computer and automation

systems. In a computer system, SCSI-2 and SCSI-3 may use this

specification to implement the physical layer for data transmission

between a controller and a disk drive. RS-485 is used for low-speed data

communications in commercial aircraft cabins vehicle bus. It requires

minimal wiring, and can share the wiring among several seats, reducing

weight.

RS-485 is used as the physical layer underlying many standard and

proprietary automation protocols used to implement Industrial Control

Systems.Utilizing a series of dedicated interface devices, it allows PCs

and industrial controllers to communicate in a local area network utilizing

a token passing medium access control.[6] These are used in

programmable logic controllers and on factory floors. Since it is

differential, it resists electromagnetic interference from motors and

welding equipment.

In theatre and performance venues RS-485 networks are used to control

lighting and other systems using the DMX512 protocol.

RS-485 is also used in building automation as the simple bus wiring and

long cable length is ideal for joining remote devices. It may be used to

https://en.wikipedia.org/wiki/SCSI
https://en.wikipedia.org/wiki/Physical_layer
https://en.wikipedia.org/wiki/Vehicle_bus
https://en.wikipedia.org/wiki/List_of_automation_protocols
https://en.wikipedia.org/wiki/List_of_automation_protocols
https://en.wikipedia.org/wiki/Industrial_Control_Systems
https://en.wikipedia.org/wiki/Industrial_Control_Systems
https://en.wikipedia.org/wiki/Industrial_control_systems
https://en.wikipedia.org/wiki/Local_area_network
https://en.wikipedia.org/wiki/Token_passing
https://en.wikipedia.org/wiki/Medium_access_control
https://en.wikipedia.org/wiki/RS-485#cite_note-6
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/DMX512
https://en.wikipedia.org/wiki/Building_automation

control video surveillance systems or to interconnect security control

panels and devices such as access control card readers.

Although many applications use RS-485 signal levels; the speed, format,

and protocol of the data transmission is not specified by RS-485.

Interoperability of even similar devices from different manufacturers is

not assured by compliance with the signal levels alone.

: "using mikroC PRO for PIC"Code Examples.1 83.

Ex1:

*RS-485 Master code(18452):

 //LCD module connections

sbit LCD_RS at RB4_bit;

sbit LCD_EN at RB5_bit;

sbit LCD_D4 at RB0_bit;

sbit LCD_D5 at RB1_bit;

sbit LCD_D6 at RB2_bit;

sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direction at TRISB4_bit;

sbit LCD_EN_Direction at TRISB5_bit;

sbit LCD_D4_Direction at TRISB0_bit;

sbit LCD_D5_Direction at TRISB1_bit;

sbit LCD_D6_Direction at TRISB2_bit;

sbit LCD_D7_Direction at TRISB3_bit;

 //End LCD module connections

sbit rs485_rxtx_pin at RC2_bit; // set transcieve pin

sbit rs485_rxtx_pin_direction at TRISC2_bit; // set transcieve pin

direction

//var

int pwr=0;

char pwrtxt[7;]

char dat[9;]

//modules

void recieve{)(

if(uart1_data_ready()){

pwr=uart1_read;)(

inttostr(pwr,pwrtxt);

lcd_out(1,1,"recieve=");

lcd_out_cp(pwrtxt);

//}if

//}void

void main{)(

//config

portC=0x00;

trisC=0xff; //input

portB=0x00;

trisB=0x00; //output

//init

UART1_Init(9600); // initialize UART1 module

Delay_ms(011;)

RS485Master_Init(); // initialize MCU as Master

//dat[0] = 65;

//dat[1] = 0;

//dat[2] = 0;

//dat[4] = 0; // ensure that message received flag is 0

//dat[5] = 0; // ensure that error flag is 0

//dat[6] = 0;

//RS485Master_Send(dat,1,160)

lcd_init;)(

lcd_cmd(_lcd_cursor_off);

//while1

while(0{)

recieve;)(

}

}

*RS-485 Slave Code(12f1822):

sbit RS485_rxtx_pin at RA2_bit; // transmit/receive control set to

PORTC.B2

sbit RS485_rxtx_pin_direction at TRISA2_bit; // RxTx pin direction set

as output

float power;

float current;

float voltage;

char dat[9;]

void main{)(

UART1_Init(9600); // Initialize UART module at 9600 bps

Delay_ms(011;)

RS485Slave_Init(4); // intialize MCU as a Slave for RS-485

communication with address 4

delay_us(01;)

while(0{)

//meter's code

voltage = ADC_Read(4;)

current = ADC_Read(5;)

voltage = (voltage*5)/1023;

power = voltage*current;

FloatToStr(power,dat);

////////

RS485Slave_Send(dat, 1);

delay_ms(0111;)

}

}

*Simulation: "using Proteus"

Ex2:

18f452):485 Master Code(-*RS

sbit rs485_rxtx_pin at RC5_bit; // set transcieve pin

sbit rs485_rxtx_pin_direction at TRISC5_bit; // set transcieve pin

direction

//var

unsigned int rec[7]; //received data from 16f

unsigned int trans; /*transmitted data(from Raspberry)to

01f using I2C, that includes specific code/*.

unsigned int state1;

unsigned int pwr1[0;]

unsigned int state2;

unsigned int pwr2[0;]

unsigned int batt_chg;

unsigned int tot_pwr[2];//total power in home

unsigned int cond; //condition: Normal (no distribution to power)

unsigned int dat[14]; //array that includes power and states of two loads.

int i;

unsigned int pwr_ex[0;]

const Add=0x12;//what is the address of 18f?????????????

///

void recieve)(

{

while(0{)

if (trans=12){

RS485Master_Receive(rec);

pwr1[0]= rec[1;]

pwr1[1]= rec[0;]

pwr1[2]= rec[0;]

rec[4]=0;

rec[5]=0;

rec[6]=0;

delay_ms(011;)

RS485Master_Receive(rec);

pwr1[3]= rec[1;]

pwr1[4]= rec[0;]

state1= rec[0;]

rec[4]=0;

rec[5]=0;

rec[6]=0;

}

if (trans=22){

RS485Master_Receive(rec);

pwr2[0]= rec[1;]

pwr2[1]= rec[0;]

pwr2[2]= rec[0;]

rec[4]=0;

rec[5]=0;

rec[6]=0;

delay_ms(011;)

RS485Master_Receive(rec);

pwr2[3]= rec[1;]

pwr2[4]= rec[0;]

state2= rec[0;]

rec[4]=0;

rec[5]=0;

rec[6]=0;

}

dat[0]=batt_chg;

dat[1]=tot_pwr[1;]

dat[2]=tot_pwr[0;]

dat[3]=tot_pwr[0;]

dat[4]=tot_pwr[3;]

dat[5]=tot_pwr[4;]

dat[6]=cond ;

dat[7]=pwr_ex[1;]

dat[8]=pwr_ex[0;]

dat[9]=pwr_ex[0;]

dat[10]=pwr_ex[3;]

dat[11]=pwr_ex[4;]

dat[12]=pwr1[1;]

dat[13]=pwr1[0;]

dat[14]=pwr1[0;]

dat[15]=pwr1[3;]

dat[16]=pwr1[4;]

dat[17]=state1;

dat[18]=pwr2[1;]

dat[19]=pwr2[0;]

dat[20]=pwr2[0;]

dat[21]=pwr2[3;]

dat[22]=pwr2[4;]

dat[23]=state2;

}

}

void main{)(

//config

*/portC=0x00;

trisC=0x00; //output

portB=0x00;

trisB=0x00; //output

SSPADD = Add;

//SSPCON1=0b00101000;

//SSPCON2=0b01001111;

//SSPSTAT=0b01000101/*;

I2C1_Init(100000); // initialize I2C communication

I2C1_Start(); // issue I2C start signal

while(0{)

trans=I2C1_Rd(0); // rec.data from Rasp. by I2C

}

I2C1_Stop(); // issue I2C stop signal

delay_ms(511;)

UART1_Init(1202); // initialize UART1 module

Delay_ms(011;)

RS485Master_Init(); // initialize 18f as Master

RS485Master_Send(trans,1,12);//12=address of home

recieve;)(

delay_ms(511;)

I2C1_Init(011111;)

I2C1_Start;)(

//I2C1_wr(Add);

while(0{)

for (i=0; i<=12; i++);/*for sending "dat" array byte by byte

for Rasp by I2C/*

{

}

I2C1_Wr(dat);

}

I2C1_Stop;)(

}

485 slave Code(16f877A):-*RS

sbit RS485_rxtx_pin at RA2_bit; // transmit/receive control set to

PORTC.B2

sbit RS485_rxtx_pin_direction at TRISA2_bit; // RxTx pin direction set

as output

unsigned int m_pwr1;

unsigned int m_pwr2;

char m_pwr1_txt[5;]

char m_pwr2_txt[5;]

float c1;

float c2;

float v1;

float v2;

unsigned int rec[7;]

unsigned int dat1[7;]

unsigned int dat2[7;]

unsigned int state1; // to indicate state of load: off=0, on=1

unsigned int state2;

void trans1{)(

//meter's code

v1= adc_read(0(*)0015/0103;)

c1= adc_read(1(*)511/0103;)

m_pwr1= v1*c1*1000;

inttostr(m_pwr1,m_pwr1_txt);

dat1[0]=m_pwr1_txt[1;]

dat1[1]=m_pwr1_txt[0;]

dat1[2]=m_pwr1_txt[0;]

dat1[3]= 3;

dat1[4]=0;

dat1[5]=0;

RS485Slave_Send(dat1, 3) ;

delay_ms(511;)

dat1[0]=m_pwr1_txt[3;]

dat1[1]=m_pwr1_txt[4;]

dat1[2]=state1;

dat1[3]= 3;

dat1[4]=0;

dat1[5]=0;

RS485Slave_Send(dat1, 3) ;

delay_ms(511;)

}

void trans2{)(

//meter's code

v2= adc_read(0(*)0015/0103;)

c2= adc_read(1(*)511/0103;)

m_pwr2= v2*c2*1000;

inttostr(m_pwr2,m_pwr2_txt);

/////

dat2[0]=m_pwr2_txt[1;]

dat2[1]=m_pwr2_txt[0;]

dat2[2]=m_pwr2_txt[0;]

dat2[3]= 3;

dat2[4]=0;

dat2[5]=0;

RS485Slave_Send(dat2, 3) ;

delay_ms(511;)

dat2[0]=m_pwr2_txt[3;]

dat2[1]=m_pwr2_txt[4;]

dat2[2]=state2;

dat2[3]= 3;

dat2[4]=0;

dat2[5]=0;

RS485Slave_Send(dat2, 3) ;

delay_ms(511;)

}

void main{)(

porta=0x00;

trisa=0xff; //pins of loads

portb=0x00;

trisb=0x00;//pins for load control

UART1_Init(1202); // Initialize UART module at 9600 bps

Delay_ms(011;)

RS485Slave_Init(12); // intialize MCU as a Slave for RS-485

communication with address 4

delay_ms(01;)

while(0{)

RS485Slave_Receive(rec);

if(rec[0]==12){

trans1;)(

}

if(rec[0]==22){

trans2;)(

}

if(rec[0]==11){

portb.b1=0; //make load1 on(active low)

state1='O;'

}

if(rec[0]==10){

portb.b1=1; //make load1 off(active low)

state1='f;'

}

if(rec[0]==20){

portb.b2=1; //make load2 off(active low)

state2='f} ;'

if(rec[0]==21){

portb.b2=0; //make load2 on(active low)

state2='O} ;'

}

{

What is I2C? 93.

I²C is a multi-master protocol that uses 2 signal lines. The two I²C signals

are called ‘serial data’ (SDA) and ‘serial clock’ (SCL). Virtually any

number of slaves and any number of masters can be connected onto these

communicate between each other using a protocol that 2 signal lines and

defines:

– 7-bits slave addresses: each device connected to the bus has got such a

unique address;

– data divided into 8-bit bytes

– a few control bits for controlling the communication start, end,

direction and for an acknowledgment mechanism.

The data rate has to be chosen between 100 kbps, 400 kbps and 3.4 Mbps,

respectively called standard mode, fast mode and high speed mode. Some

I²C variants include 10 kbps (low speed mode) and 1 Mbps (fast mode +)

as valid speeds.

Physically, the I²C bus consists of the 2 active wires SDA and SCL and a

ground connection (refer to figure 4). The active wires are both bi-

directional. The I2C protocol specification states that the IC that initiates

a data transfer on the bus is considered the Bus Master. Consequently, at

that time, all the other ICs are regarded to be Bus Slaves.

3.10 What is Operation of I2C?

At the physical layer, both SCL and SDA lines are open-drain I/Os with

pull-up resistors (refer to figure 4). Pulling such a line to ground is

decoded as a logical zero, while releasing the line and letting it flow is a

logical one. Actually, a device on a I²C bus ‘only drives zeros’.

First, the master will issue a START condition. This acts as an

‘Attention’ signal to all of the connected devices. All ICs on the bus will

listen to the bus for incoming data.

Then the master sends the ADDRESS of the device it wants to access,

along with an indication whether the access is a Read or Write operation.

Having received the address, all IC’s will compare it with their own

address. If it doesn’t match, they simply wait until the bus is released by

the stop condition (see below). If the address matches, however, the chip

will produce a response called the ACKNOWLEDGE signal.

Once the master receives the acknowledge, it can start transmitting or

receiving DATA. When all is done, the master will issue the STOP

condition. This is a signal that states the bus has been released and that

the connected ICs may expect another transmission to start any moment.

When a master wants to receive data from a slave, it proceeds the same

way, but sets the RD/nWR bit at a logical one. Once the slave has

acknowledged the address, it starts sending the requested data, byte by

byte. After each data byte, it is up to the master to acknowledge the

received data.

 3.11 Why I2C?

 Independent Master, Slave, and Monitor functions.

 Supports both Multi-master and Multi-master with Slave functions.

 Multiple I2C slave addresses supported in hardware.

 One slave address can be selectively qualified with a bit mask or an

address range in order to respond to multiple I ^ 2C bus addresses.

 10-bit addressing supported with software assist.

 Supports SMBus.

 Only two bus lines are required

 No strict baud rate requirements, the master generates a bus clock

 I2C is a true multi-master bus providing arbitration and collision

detection

http://www.i2c-bus.org/MultiMaster/

3.12 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

"I2C Mode" in 18f4620 microcontroller:

The MSSP module in I2C mode fully implements all master and slave

functions (including general call support) and provides interrupts on Start

and Stop bits in hardware to determine a free bus (multi-master function).

The MSSP module implements the standard mode specifications, as well

as 7-bit and 10-bit addressing. Two pins are used for data transfer:

• Serial clock (SCL) – RC3/SCK/SCL

• Serial data (SDA) – RC4/SDI/SDA The user must configure these pins

as inputs or outputs through the TRISC<4:3> bits..

–REGISTERS:

 The MSSP module has six registers for I2C operation. These are:

• MSSP Control Register 1 (SSPCON1)

• MSSP Control Register 2 (SSPCON2)

• MSSP Status Register (SSPSTAT)

• Serial Receive/Transmit Buffer Register (SSPBUF)

• MSSP Shift Register (SSPSR) – Not directly accessible

• MSSP Address Register (SSPADD) SSPCON1, SSPCON2 and

SSPSTAT are the control and status registers in I2C mode operation. The

SSPCON1 and SSPCON2 registers are readable and writable. The lower

6 bits of the SSPSTAT are read-only. The upper two bits of the

SSPSTAT are read/write. SSPSR is the shift register used for shifting

data in or out. SSPBUF is the buffer register to which data bytes are

written to or read from. SSPADD register holds the slave device address

when the MSSP is configured in I2C Slave mode. When the MSSP is

configured in Master mode, the lower seven bits of SSPADD act as the

Baud Rate Generator reload value. In receive operations, SSPSR and

SSPBUF together create a double-buffered receiver. When SSPSR

receives a complete byte, it is transferred to SSPBUF and the SSPIF

interrupt is set. During transmission, the SSPBUF is not double- buffered.

A write to SSPBUF will write to both SSPBUF and SSPSR.

3.13 Code Examples.2 : "using mikroC PRO for PIC"

*I2C Master Code(18452):

int var;

char byte;

const Add=0x69;

void main{)(

portc=0x00;

trisc=0x00;

porta=0x00;

trisa=0x00;

SSPCON1=0b00101000;

SSPCON2=0b01001111;

SSPSTAT=0b01000101;

 I2C1_Init(100000); // initialize I2C communication

 I2C1_Start(); // issue I2C start signal

 I2C1_Wr(Add); //address of the slave

 I2C1_Wr(0xff); // send data (data to be written)

 I2C1_Stop(); // issue I2C stop signal

 delay_ms(3111;)

 I2C1_Init(100000); // initialize I2C communication

I2C1_Start(); // issue I2C start signal

//I2C1_Wr(Add);

var = I2C1_Rd(0); //0 == No Acknowledgement

I2C1_Stop(); // issue I2C stop signal

while(0{)

if(var == 0xff)

 {

 porta = 0xff;

 }

 }

 }

*I2C slave Code(16f877A):

int byte;

const Add = 0x69; // set I2C device address

void main{)(

portc=0x00;

trisc=0xff;

porta=0x00;

trisa=0x00;

SSPADD = Add; // Get address (7bit). Lsb is read/write flag

//SSPCON1=0b00101110; // Set to I2C slave with 7-bit

address

//SSPCON2=0b10000001;

//SSPSTAT=0b01000100;

//PIE1.SSPIF = 1; // enable SSP interrupts

I2C1_Init(100000); // initialize I2C communication

I2C1_Start(); // issue I2C start signal

byte = I2C1_Rd(0); //0 == No Acknowledgement

I2C1_Stop(); // issue I2C stop signal

while(0{)

if(byte == 0xff)

 {

 porta = 0xff;

 }

I2C1_Init(100000); // initialize I2C communication

I2C1_Start(); // issue I2C start signal

//I2C1_wr(Add);

I2C1_Wr(byte); // send data (data to be written)

I2C1_Stop(); // issue I2C stop signal

}

*Simulation: "using Proteus"

Chapter (4):

Raspberry Pi

4.1 What is the Raspberry Pi?

The Raspberry Pi is a small computer about the size of a credit card and

costs approximately £25. It was developed in the UK by the Raspberry Pi

Foundation with the hope of inspiring a generation of learners to be

creative and to discover how computers are programmed and how they

function.

This small computer features amazing HD (high-definition) quality video

playback, sports high quality audio and has the ability to play 3D games.

The device uses the ARM processor which does most of the hard work in

order to run the Raspberry Pi. ARM processors can be thought of as the

brains of the device.

These processors are mainly used in small devices such as mobile phones,

hand held mobile gaming devices and other small digital devices. The

reason for this is that ARM processors are extremely efficient and fast

when used in small devices. This makes the ARM processor the obvious

choice for the Raspberry Pi.

Even though the Raspberry Pi is a computer it does not have a hard drive

like traditional computers, instead it relies on the SD card for the starting

up and storing of information. For the Raspberry Pi the SD card does the

same job as a hard drive does in a traditional computer.

Chapter 4

Raspberry Pi

The SD card must contain the operating system, programs and the data

needed to run the Raspberry Pi. The operating system tells the Raspberry

Pi how to function, how to handle any input from the user and how to

manage programs when they are running.

4.2 Hardware:

Hardware is a physical device that can be touched or held, like a hard

drive or a mobile phone. Software can be thought of as a program or a

collection of programs that instruct a computer on what to do and how to

do it. Below is an image of the Raspberry Pi which describes some of the

components that make up the hardware.

*Micro USB power port

 The micro USB power port is used to power the Raspberry Pi device.

 *HDMI port

 The HDMI output is used to plug into a modern television or monitor.

Ethernet port*

 The Ethernet port is used to connect the Raspberry Pi to the internet or a

local network.

 *USB ports

 USB 2.0 ports are used to plug in a keyboard, mouse, web cam, external

hubs etc.

 *Audio output

 The audio output can be used to plug into an external amplifier or an

audio docking station.

GPIO headers *

The GPIO headers are used to connect the Raspberry Pi to other hardware

devices. For example, they can be used to connect to LEDs, motors and

other electronic components.

 *RCA video output

The video output is used to connect to an older type television.

*ARM processor

The ARM processor can be thought of as the brains of the Raspberry Pi.

Ingredients :4.3

Preparing the Raspberry Pi : 4.4

Before you can connect and power up the Raspberry Pi you will have to

create a working operating system. In order to install the operating system

you will need a blank SD card. It is recommended that the SD is at least 4

GB in size. You can also use a larger SD card if you intend to store a lot

of data. If you will be using a pre-loaded SD card then you can skip over

this tutorial. Installing Raspberry Pi using Windows XP / Vista / 7 / 8

You can download an operating system from the official Raspberry Pi

website www.raspberrypi.org/downloads - the recommended operating

system is Raspbian “wheezy”. If you are using Microsoft Windows you

will need to save your downloaded operating system image to a folder

and extract the contents. This will create a file that ends with a

‘xxxx.img’ file extension. The file name may vary depending on which

version is available at the time. The main point is that you have a file

ending in ‘img’. In order to write this image (.img) file to the SD card

you will need a program to do this. Download the following program

called ‘Win32 Disk Imager’ and extract it. The download can be found by

visiting www.raspberryshake.com/preparingraspberry-pi and clicking the

‘Download here’ link.

When the program is opened it will be expecting the image file which is

the operating system image. It also requires a device to write to. You can

ignore the MD5 hash check box as we want to concentrate on making this

installation as easy as possible.

Click on the blue folder icon and browse to the image file. Select your SD

card device letter by clicking on the device drop down. Check that you

are writing to the SD card device. If you have any doubt you can double

click on My Computer and see that the drive letter that has the SD icon

next to it. When you are sure that you have selected the correct image file

and the correct device to write to, click on the write button and wait for

the progress bar to reach 100%. When this has completed, safely eject

your SD card. Make sure your Raspberry Pi is powered off and plug your

SD card into it.

Basic Networking4.5

Computer networks are made up of a group of computers or devices.

Each computer requires a unique address in order to know where to send

data to. When a letter is sent in the post it will contain the name of the

person, the house number and the area they are located in. This is the

same when data is sent over the internet. An example of an address looks

like this: 192.168.100.1 This type of internet addressing is called IPv4

and stands for Internet Protocol version 4. The problem with IPv4 has

become clear since more and more devices are being connected to the

internet.

Each device that connects to the internet needs an address and IPv4 has a

limited amount of addresses available. The answer to this was to create a

new version called IPv6 which allows for more devices to be connected.

An example of IPv6 looks like this:

2001:0db8:85a3:0042:0000:8a2e:0370:7334 A network consists of client

computers and servers each having a unique internet address. Clients will

request information from the server and the server returns this

information. When you are visiting a web site your web browser is the

client and the web site host is the server. When a client asks the server for

this information it is called a client request

Servers listen for client requests using a port. A port is like a door waiting

for someone to knock on it. When it receives a request from a client the

server will respond with the information. Each port has a number which

determines the type of data to be sent. Some ports are reserved so that

when a client sends a request for information, it always uses the same

port number. For example when you enter an address into your Raspberry

Pi’s web browser, it will connect to port 80 which is reserved for

delivering web pages. The browser takes care of which port number to

use so that you don’t have to concern yourself with this. You can view

the following file which lists your network interfaces:

/etc/network/interfaces

A snippet of the file looks like this:

iface eth0 inet dhcp

The word iface is referring to an interface and eth0 is referring to the

Ethernet port. Eth0 is the only Ethernet interface on the Raspberry Pi. The

rest of the line uses something called DHCP (dynamic host configuration

protocol) a protocol used to configure network devices. DHCP is used to

automatically obtain a unique IP address which allows your Raspberry Pi

to be connected to a network.

An Introduction to Python4.6

Flexible and powerful, Python was originally developed in the late

1980sat the National Research Institute for Mathematics and Computer

Science by Guido van Rossum as a successor to the ABC language. Since

its introduction, Python has grown in popularity thanks to what is seen as

a clear and expressive syntax developed with a focus on ensuring that

code is readable. Python is a high-level language. This means that Python

code is written in largely recognizable English, providing the Piwith

commands in a manner that is quick to learn and easy to follow. This is in

marked contrast to low-level languages, like assembler, which a recloser

to how the computer “thinks” but almost impossible for a human to

follow without experience. The high-level nature and clear syntax of

Python make it a valuable tool for any one who wants to learn to

program.

Raspberry Pi role in our project :4.7

 It can be considered as control broker between homes and server.

It receives data from microcontroller through I2C communication

protocol.

Server can control turning on and off any load in each home through it, as

raspberry pi send specific signal for each order.

As home 1 has address 100 , when raspberry send “10 “ this means that

Microcontroller will turn off load 1 in home 1 .

When raspberry send “11 “ this means that microcontroller will turn on

load 1 in home 1 and so ,,

_While programming we made many stores on the raspberry like:

Battery charge

Power at home 1, 2

Status of each load “on, off “

It has a real important role in this project.

Chapter (5):

Server

Server definition :5.1

In computing, a server is a computer program or a device that provides

functionality for other programs or devices, called "clients".

Thisarchitecture is called the client–server model, and a single overall

computation is distributed across multiple processes or devices. Servers

can provide various functionalities, often called "services", such as

sharing data or resources among multiple clients, or performing

computation for a client. A single server can serve multiple clients, and a

single client can use multiple servers. A client process may run on the

same device or may connect over a network to a server on a different

, mail servers,file servers, database serversTypical servers are [1]device.

print servers, web servers, game servers, and application servers.

Client–server systems are today most frequently implemented by (and

often identified with) the request–response model: a client sends a request

to the server, which performs some action and sends a response back to

the client, typically with a result or acknowledgement. Designating a

computer as "server-class hardware" implies that it is specialized for

running servers on it. This often implies that it is more powerful and

reliable than standard personal computers, but alternatively, large

computing clusters may be composed of many relatively simple,

replaceable server components.

Server's operating systems :5.2

1)Windows

2)Linux

3)Unix

 GUI not available or optional

 Ability to reconfigure and update both hardware and software to some

extent without restart

 Advanced backup facilities to permit regular and frequent online backups

of critical data,

 Transparent data transfer between different volumes or devices

 Flexible and advanced networking capabilities

Chapter 5

Server

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Client_(computing)
https://en.wikipedia.org/wiki/Systems_architecture
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/System_resource
https://en.wikipedia.org/wiki/Mail_server
https://en.wikipedia.org/wiki/File_server
https://en.wikipedia.org/wiki/Database_server
https://en.wikipedia.org/wiki/Server_(computing)#cite_note-1
https://en.wikipedia.org/wiki/Print_server
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Game_server
https://en.wikipedia.org/wiki/Application_server
https://en.wikipedia.org/wiki/Request%E2%80%93response
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Computing_cluster
https://en.wikipedia.org/wiki/GUI
https://en.wikipedia.org/wiki/Reconfigurable_computing
https://en.wikipedia.org/wiki/Backup
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Network_transparency
https://en.wikipedia.org/wiki/Volume_(computing)

 Automation capabilities such as daemons in UNIX and services in

Windows

 Tight system security, with advanced user, resource, data, and memory

protection.

 Advanced detection and alerting on conditions such as overheating,

processor and disk failure.

In practice, today many desktop and server operating systems share

similar code bases, differing mostly in configuration.

The main purpose of any server is:

The purpose of a server is to share data as well as to share resources and

distribute work. A server computer can serve its own computer programs

as well; depending on the scenario, this could be part of a quid pro quo

transaction, or simply a technical possibility. The following table shows

several scenarios in which a server is used.

5.3 Hardware Requirements:

The purpose of a server is to share data as well as to share resources and

distribute work. A server computer can serve its own computer programs

as well; depending on the scenario, this could be part of a quid pro quo

transaction, or simply a technical possibility. The following table shows

several scenarios in which a server is used.

https://en.wikipedia.org/wiki/Daemon_(computer_software)
https://en.wikipedia.org/wiki/Windows_service
https://en.wikipedia.org/wiki/Code_base
https://en.wikipedia.org/wiki/System_resource
https://en.wikipedia.org/wiki/Quid_pro_quo
https://en.wikipedia.org/wiki/System_resource
https://en.wikipedia.org/wiki/Quid_pro_quo

A rack-mountable server with the top cover removed to reveal internal

components

Large Servers :5.4

Large traditional single servers would need to be run for long periods

without interruption. Availability would have to be very high, making

hardware reliability and durability extremely important. Mission-critical

enterprise servers would be very fault tolerant and use specialized

hardware with low failure rates in order to maximize uptime.

Uninterruptible power supplies might be incorporated to insure against

power failure. Servers typically include hardware redundancy such as

along with [8],ECC memorysystems, and disk RAID, power suppliesdual

extensive pre-boot memory testing and verification. Critical components

might be hot swappable, allowing technicians to replace them on the

running server without shutting it down, and to guard against overheating,

servers might have more powerful fans or use water cooling. They will

often be able to be configured, powered up and down or rebooted

remotely, using out-of-band management, typically based on IPMI.

Server casings are usually flat and wide, and designed to berack-mounted.

These types of servers are often housed in dedicated data centers. These

will normally have very stable power and Internet and increased security.

Noise is also less of a concern, but power consumption and heat output

can be a serious issue. Server rooms are equipped with air conditioning

devices.

Energy Consumption :5.5

In 2010, data centers (servers, cooling, and other electrical infrastructure)

were responsible for 1.1-1.5% of electrical energy consumption

One estimate is that total [12]2.2% in the United States.-worldwide and 1.7

energy consumption for information and communications technology

in the rest of the economy [13]carbon footprintsaves more than 5 times its

by enabling efficiency.

https://en.wikipedia.org/wiki/Availability
https://en.wikipedia.org/wiki/Mission-critical
https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/Failure_rate
https://en.wikipedia.org/wiki/Uptime
https://en.wikipedia.org/wiki/Uninterruptible_power_supply
https://en.wikipedia.org/wiki/Redundancy_(engineering)
https://en.wikipedia.org/wiki/Server_(computing)#cite_note-9
https://en.wikipedia.org/wiki/ECC_memory
https://en.wikipedia.org/wiki/Hard_disk
https://en.wikipedia.org/wiki/RAID
https://en.wikipedia.org/wiki/Power_supply
https://en.wikipedia.org/wiki/Preboot_Execution_Environment
https://en.wikipedia.org/wiki/Hot_swappable
https://en.wikipedia.org/wiki/Water_cooling
https://en.wikipedia.org/wiki/Out-of-band_management
https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://en.wikipedia.org/wiki/Rack_unit
https://en.wikipedia.org/wiki/Server_rack
https://en.wikipedia.org/wiki/Data_centers
https://en.wikipedia.org/wiki/Server_(computing)#cite_note-13
https://en.wikipedia.org/wiki/Server_(computing)#cite_note-14
https://en.wikipedia.org/wiki/Carbon_footprint
https://en.wikipedia.org/wiki/Carbon_footprint

HP server

Server Cooling System

5.6 Server Responsibility:

In our project the server is responsible for :

1)The server linking between the hardware and the mobile application.

2)The server to control the buying and selling process.

3)The server nomination house with the highest surplus of electricity to

carry out the sale and purchase.

4)The server allows the client to determine the price of electricity.

5)The server tells the client in case of a malfunction or if there is an

electrical overload the client should alleviate loads.

6)The server keeps the data private customers such as the user name and

its password in addition to the Data bass for the network.

Server Structure :5.7

We have 2 servers :

1)online server :

On cloud.

2)offline server

On Raspberry pi.

The offline server collecting the data on raspberry pi and it uploaded it to

the cloud.

is cloud computing ?So what 5.8

To IBM Cloud computing, often referred to as simply “the cloud,” is the

delivery of on-demand computing resources—everything from

use basis.-for-over the Internet on a pay—applications to data centers

Cloud computing is a type of computing that relies on sharing computing

resources rather than having local servers or personaldevices to handle

applications. Cloud computing is comparable togrid computing, a type of

computing where unused processing cycles of all computers in a network

are harnesses to solve problems too intensive for any stand-alone

machine.

In cloud computing, the word cloud (also phrased as "the cloud") is used

as a metaphor for "the Internet," so the phrase cloud computing means "a

type of Internet-based computing," where different services — such as

servers, storage and applications —are delivered to an organization's

computers and devices through the Internet.

?How Cloud Computing Works5.9

The goal of cloud computing is to apply traditional supercomputing, or

high-performance computing power, normally used by military and

research facilities, to perform tens of trillions of computations per second,

http://www.webopedia.com/TERM/D/device.html
http://www.webopedia.com/TERM/A/application.html
http://www.webopedia.com/TERM/C/TERM/G/grid_computing.html
http://www.webopedia.com/TERM/c/cloud.html
http://www.webopedia.com/TERM/S/supercomputer.html
http://www.webopedia.com/TERM/H/High_Performance_Computing.html

in consumer-oriented applications such as financial portfolios, to deliver

personalized information, to provide data storage or to power large,

immersive online computer games.

To do this, cloud computing uses networks of large groups of servers

typically running low-cost consumer PC technology with specialized

connections to spread data-processing chores across them. This shared

ITinfrastructure contains large pools of systems that are linked together.

techniques are used to maximize the power of cloud virtualizationOften,

computing.

Cloud Computing Standards5.10

The standards for connecting the computer systems and the software

needed to make cloud computing work are not fully defined at present

time, leaving many companies to define their own cloud computing

technologies. Cloud computing systems offered by companies, like

IBM's "Blue Cloud" technologies for example, are based on open

standards and open source software which link together computers that

are used to to deliver Web 2.0capabilities like mash-ups or mobile

commerce.

Cloud Computing in the Data Center and for Small Business

Cloud computing has started to obtain mass appeal in corporate data

centers as it enables the data center to operate like the Internet through

the process of enabling computing resources to be accessed and shared as

virtual resources in a secure and scalable manner.

For a small and medium size business (SMB), the benefits of cloud

computing is currently driving adoption. In the SMB sector there is often

a lack of time and financial resources to purchase, deploy and maintain an

infrastructure (e.g. the software, server and storage).

In cloud computing, small businesses can access these resources and

expand or shrink services as business needs change. The common pay-as-

you-go subscription model is designed to let SMBs easily add or remove

services and you typically will only pay for what you do use.

Cloud Types of service :5.11

Software as a service (SaaS)

http://www.webopedia.com/TERM/N/network.html
http://www.webopedia.com/TERM/S/server.html
http://www.webopedia.com/TERM/I/IT.html
http://www.webopedia.com/TERM/V/virtualization.html
http://www.webopedia.com/TERM/I/IBM.html
http://www.webopedia.com/TERM/O/open_source.html
http://www.webopedia.com/TERM/W/Web_2_point_0.html
http://www.webopedia.com/TERM/M/mash_up.html
http://www.webopedia.com/TERM/M/mobile_commerce.html
http://www.webopedia.com/TERM/M/mobile_commerce.html
http://www.webopedia.com/TERM/S/SMB.html
http://www.webopedia.com/TERM/P/Pay_As_You_Go.html
http://www.webopedia.com/TERM/P/Pay_As_You_Go.html

Cloud-based applications—or software as a service—run on distant

computers “in the cloud” that are owned and operated by others and that

connect to users’ computers via the Internet and, usually, a web browser.

*The benefits of SaaS

 You can sign up and rapidly start using innovative business apps

 Apps and data are accessible from any connected computer

 No data is lost if your computer breaks, as data is in the cloud

 The service is able to dynamically scale to usage needs

Platform as a service (PaaS)

Platform as a service provides a cloud-based environment with

everything required to support the complete lifecycle of building and

delivering web-based (cloud) applications—without the cost and

complexity of buying and managing the underlying hardware, software,

provisioning, and hosting.

*The benefits of PaaS

 Develop applications and get to market faster

 Deploy new web applications to the cloud in minutes

 Reduce complexity with middleware as a service

Infrastructure as a service (IaaS)

Infrastructure as a service provides companies with computing resources

including servers, networking, storage, and data center space on a pay-

per-use basis.

*The benefits of IaaS

 No need to invest in your own hardware

 Infrastructure scales on demand to support dynamic workloads

 Flexible, innovative services available on demand

Cloud Types :

Public clouds are owned and operated by companies that offer rapid

access over a public network to affordable computing resources. With

public cloud services, users don’t need to purchase hardware, software, or

supporting infrastructure, which is owned and managed by providers.

Key aspects of public cloud

 Innovative SaaS business apps for applications ranging from

customer resource management (CRM) to transaction management

and data analytics

 Flexible, scalable IaaS for storage and compute services on a

moment’s notice

 Powerful PaaS for cloud-based application development and

deployment environments.

A private cloud is infrastructure operated solely for a single organization,

whether managed internally or by a third party, and hosted either

internally or externally. Private clouds can take advantage of cloud’s

efficiencies, while providing more control of resources and steering clear

of multi-tenancy.

Key aspects of private cloud

 A self-service interface controls services, allowing IT staff to

quickly provision, allocate, and deliver on-demand IT resources

 Highly automated management of resource pools for everything

from compute capability to storage, analytics, and middleware

 Sophisticated security and governance designed for a company’s

specific requirements

Why Cloud computing ?5.12

1. Flexibility

Cloud-based services are ideal for businesses with growing or fluctuating

bandwidth demands. If your needs increase it’s easy to scale up your

cloud capacity, drawing on the service’s remote servers. Likewise, if you

need to scale down again, the flexibility is baked into the service. This

level of agility can give businesses using cloud computing a real

advantage over competitors – it’s not surprising that CIOs and IT

Directors rank ‘operational agility’ as a top driver for cloud adoption.

2. Disaster recovery

Businesses of all sizes should be investing in robust disaster recovery, but

for smaller businesses that lack the required cash and expertise, this is

often more an ideal than the reality. Cloud is now helping more

organisations buck that trend. According to Aberdeen Group, small

http://www.gartner.com/newsroom/id/2923217
http://www.gartner.com/newsroom/id/2923217
http://www.aberdeen.com/research/9311/rr-smb-cloud-backup/content.aspx

businesses are twice as likely as larger companies to have implemented

cloud-based backup and recovery solutions that save time, avoid large up-

front investment and roll up third-party expertise as part of the deal.

3. Automatic software updates

The beauty of cloud computing is that the servers are off-premise, out of

sight and out of your hair. Suppliers take care of them for you and roll out

regular software updates – including security updates – so you don’t have

to worry about wasting time maintaining the system yourself. Leaving

you free to focus on the things that matter, like growing your business.

4. Capital-expenditure Free

Cloud computing cuts out the high cost of hardware. You simply pay as

you go and enjoy a subscription-based model that’s kind to your cash

flow. Add to that the ease of setup and management and suddenly your

scary, hairy IT project looks at lot friendlier. It’s never been easier to take

the first step to cloud adoption.

5. Increased collaboration

When your teams can access, edit and share documents anytime, from

anywhere, they’re able to do more together, and do it better. Cloud-based

workflow and file sharing apps help them make updates in real time and

gives them full visibility of their collaborations.

6. Work from anywhere

With cloud computing, if you’ve got an internet connection you can be at

work. And with most serious cloud services offering mobile apps, you’re

not restricted by which device you’ve got to hand.

The result? Businesses can offer more flexible working perks to

employees so they can enjoy the work-life balance that suits them –

without productivity taking a hit. One study reported that 42% of workers

would swap a portion of their pay for the ability to telecommute. On

average they’d be willing to take a 6% pay cut.

7. Document control

The more employees and partners collaborate on documents, the greater

the need for watertight document control. Before the cloud, workers had

to send files back and forth as email attachments to be worked on by one

user at a time. Sooner or later – usually sooner – you end up with a mess

of conflicting file content, formats and titles.

And as even the smallest companies become more global, the scope for

complication rises. According to one study, "73% of knowledge workers

http://www.aberdeen.com/research/9311/rr-smb-cloud-backup/content.aspx
http://www.aberdeen.com/research/9311/rr-smb-cloud-backup/content.aspx
http://www.salesforce.com/uk/cloudcomputing/#steps?d=70130000000i7ND
http://www.salesforce.com/uk/cloudcomputing/#steps?d=70130000000i7ND
http://www.salesforce.com/uk/mobile/overview/?d=70130000000i7ND

collaborate with people in different time zones and regions at least

monthly".

When you make the move to cloud computing, all files are stored

centrally and everyone sees one version of the truth. Greater visibility

means improved collaboration, which ultimately means better work and a

healthier bottom line. If you’re still relying on the old way, it could be

time to try something a little more streamlined.

8. Security

Lost laptops are a billion dollar business problem. And potentially greater

than the loss of an expensive piece of kit is the loss of the sensitive data

inside it. Cloud computing gives you greater security when this happens.

Because your data is stored in the cloud, you can access it no matter what

happens to your machine. And you can even remotely wipe data from lost

laptops so it doesn’t get into the wrong hands.

9. Competitiveness

Wish there was a simple step you could take to become more

competitive? Moving to the cloud gives access to enterprise-class

technology, for everyone. It also allows smaller businesses to act faster

than big, established competitors. Pay-as-you-go service and cloud

business applications mean small outfits can run with the big boys, and

disrupt the market, while remaining lean and nimble. David now packs a

Goliath-sized punch.

10. Environmentally friendly

While the above points spell out the benefits of cloud computing for your

business, moving to the cloud isn’t an entirely selfish act. The

environment gets a little love too. When your cloud needs fluctuate, your

server capacity scales up and down to fit. So you only use the energy you

need and you don’t leave oversized carbon footprints. This is something

close to our hearts at Salesforce, where we try our best to create

sustainable solutions with minimal environmental impact.

Why raspberry pi?5.13

The Raspberry Pi is a low cost, credit-card sized computer that plugs

into a computer monitor or TV, and uses a standard keyboard and mouse.

It is a capable little device that enables people of all ages to explore

computing, and to learn how to program in languages like Scratch and

Python. It’s capable of doing everything you’d expect a desktop computer

http://www.salesforce.com/uk/company/sustainability/
http://www.salesforce.com/uk/company/sustainability/

to do, from browsing the internet and playing high-definition video, to

making spreadsheets, word-processing, and playing games.

What’s more, the Raspberry Pi has the ability to interact with the outside

world, and has been used in a wide array of digital maker projects, from

music machines and parent detectors to weather stations and tweeting

birdhouses with infra-red cameras. We want to see the Raspberry Pi being

used by kids all over the world to learn to program and understand how

computers work.

The Raspberry Pi hardware has evolved through several versions that

feature variations in memory capacity and peripheral-device support.

Hardware :5.14

This block diagram depicts models A, B, A+, and B+. Model A, A+, and

Zero lack the Ethernet and USB hub components. The Ethernet adapter is

connected to an additional USB port. In model A and A+ the USB port is

connected directly to the SoC. On model B+ and later models the

USB/Ethernet chip contains a five-point USB hub, of which four ports are

available, while model B only provides two. On the model Zero, the USB

port is also connected directly to the SoC, but it uses a micro USB (OTG)

port.

1-Processor :

The system on a chip (SoC) used in the first generation Raspberry Pi is

somewhat equivalent to the chip used in older smartphones (such as

BCM2835 mBroadco). The Raspberry Pi is based on the 3GS, 3G, iPhone

S processor, -76JZFARM11 MHzwhich includes an 700 [15]SoC,

VideoCore IV graphics processing unit (GPU), and RAM. It has a Level

1 cache of 16 KB and a Level 2 cache of 128 KB. The Level 2 cache is

used primarily by the GPU. The SoC is stacked underneath the RAM

chip, so only its edge is visible.

The Raspberry Pi 2 uses a Broadcom BCM2836 SoC with a 900 MHz 32-

bit quad-core ARM Cortex-A7 processor, with 256 KB shared L2 cache.

https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Broadcom
https://en.wikipedia.org/wiki/IPhone_3GS
https://en.wikipedia.org/wiki/IPhone_3G
https://en.wikipedia.org/wiki/IPhone
https://en.wikipedia.org/wiki/ARM11
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-Broadcom-BCM2835-Website-15
https://en.wikipedia.org/wiki/VideoCore
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Kibibyte
https://en.wikipedia.org/wiki/Package_on_package
https://en.wikipedia.org/wiki/ARM_Cortex-A7

The Raspberry Pi 3 uses a Broadcom BCM2837 SoC with a 1.2 GHz 64-

bit quad-core ARM Cortex-A53 processor, with 512 KB shared L2 cache.

2-RAM :

On the older beta model B boards, 128 MB was allocated by default to

the GPU, leaving 128 MB for the CPU. On the first 256 MB release

model B (and model A), three different splits were possible. The default

split was 192 MB (RAM for CPU), which should be sufficient for

standalone 1080p video decoding, or for simple 3D, but probably not for

both together. 224 MB was for Linux only, with only a 1080p

framebuffer, and was likely to fail for any video or 3D. 128 MB was for

heavy 3D, possibly also with video decoding (e.g.

XBMC).Comparatively the Nokia 701 uses 128 MB for the Broadcom

VideoCore IV. For the new model B with 512 MB RAM initially there

were new standard memory split files released(arm256_start.elf,

arm384_start.elf, arm496_start.elf) for 256 MB, 384 MB and 496 MB

CPU RAM (and 256 MB, 128 MB and 16 MB video RAM). But a week

or so later the RPF released a new version of start.elf that could read a

new entry in config.txt (gpu_mem=xx) and could dynamically assign an

amount of RAM (from 16 to 256 MB in 8 MB steps) to the GPU, so the

older method of memory splits became obsolete, and a single start.elf

worked the same for 256 and 512 MB Raspberry Pis.

The Raspberry Pi 2 and the Raspberry Pi 3 have 1 GB of RAM. The

Raspberry Pi Zero has 512 MB of RAM.

3-Networking :

Though the model A and A+ and Zero do not have an 8P8C ("RJ45")

Ethernet port, they can be connected to a network using an external user-

supplied USB Ethernet or Wi-Fiadapter. On the model B and B+ the

Ethernet port is provided by a built-in USB Ethernet adapter using the

SMSC LAN9514 chip. The Raspberry Pi 3 is equipped with 2.4 GHz

WiFi 802.11n (600 Mbit/s) and Bluetooth 4.1 (24 Mbit/s) in addition to

the 10/100 Ethernet port.

4-Video :

The video controller is capable of standard modern TV resolutions, such

as HD and Full HD, and higher or lower monitor resolutions and older

standard CRT TV resolutions. As shipped (i.e. without custom

overclocking) it is capable of the following: 640×350 EGA; 640×480

https://en.wikipedia.org/wiki/ARM_Cortex-A53
https://en.wikipedia.org/wiki/Framebuffer
https://en.wikipedia.org/wiki/8P8C
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/IEEE_802.11n-2009
https://en.wikipedia.org/wiki/Bluetooth_4.1
https://en.wikipedia.org/wiki/Enhanced_Graphics_Adapter

VGA; 800×600 SVGA; 1024×768 XGA; 1280×720 720p HDTV;

1280×768 WXGAvariant; 1280×800 WXGA variant; 1280×1024 SXGA;

1366×768 WXGA variant; 1400×1050 SXGA+; 1600×1200 UXGA;

1680×1050 WXGA+; 1920×1080 1080p HDTV; 1920×1200 WUXGA.

Higher resolutions, such as, up to 2048×1152, may work or even

Note [33]3840×2160 at 15 Hz (too low a framerate for convincing video).

also that allowing the highest resolutions does not imply that the GPU can

decode video formats at those; in fact, the Pis are known to not work

reliably for H.265 (at those high resolution, at least), commonly used for

very high resolutions (most formats, commonly used, up to full HD, do

work).

Although the Raspberry Pi 3 does not have H.265 decoding hardware, the

CPU, more powerful than its predecessors, is potentially able to decode

H.265-encoded videos in software. The Open Source Media Center

(OSMC) project said in February 2016:

The new BCM2837 based on 64-bit ARMv8 architecture is backwards

compatible with the Raspberry Pi 2 as well as the original. While the new

CPU is 64-bit, the Pi retains the original VideoCore IV GPU which has a

32-bit design. It will be a few months before work is done to establish 64-

bit pointer interfacing from the kernel and userland on the ARM to the

32-bit GPU. As such, for the time being, we will be offering a single

Raspberry Pi image for Raspberry Pi 2 and the new Raspberry Pi 3. Only

when 64-bit support is ready, and beneficial to OSMC users, will we offer

a separate image. The new quad core CPU will bring smoother GUI

performance. There have also been recent improvements to H265

decoding. While not hardware accelerated on the Raspberry Pi, the new

CPU will enable more H265 content to be played back on the Raspberry

Pi than before.

:Raspberry Pi 3 announced with OSMC support 5.15

The Pi 3's GPU has higher clock frequencies—300 MHz and 400 MHz
36]than previous versions' 250 MHz.—for different parts

The Pis can also generate 576i and 480i composite video signals, as used

on old-style (CRT) TV screens through standard connectors—either RCA

or 3.5mm phone connector depending on models. The television signal

standards supported are PAL-BGHID, PAL-M, PAL-N, NTSC and

NTSC-J.

https://en.wikipedia.org/wiki/Video_Graphics_Array
https://en.wikipedia.org/wiki/Super_video_graphics_array
https://en.wikipedia.org/wiki/XGA
https://en.wikipedia.org/wiki/720p
https://en.wikipedia.org/wiki/High-definition_television#High-definition_display_resolutions
https://en.wikipedia.org/wiki/Graphic_display_resolutions#WXGA
https://en.wikipedia.org/wiki/Graphic_display_resolutions#WXGA
https://en.wikipedia.org/wiki/SXGA
https://en.wikipedia.org/wiki/Graphic_display_resolutions#WXGA
https://en.wikipedia.org/wiki/SXGA%2B
https://en.wikipedia.org/wiki/UXGA
https://en.wikipedia.org/wiki/WXGA%2B
https://en.wikipedia.org/wiki/1080p
https://en.wikipedia.org/wiki/High-definition_television#High-definition_display_resolutions
https://en.wikipedia.org/wiki/WUXGA
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-33
https://en.wikipedia.org/wiki/H.265
https://en.wikipedia.org/wiki/OSMC
https://en.wikipedia.org/wiki/576i
https://en.wikipedia.org/wiki/480i
https://en.wikipedia.org/wiki/Composite_video
https://en.wikipedia.org/wiki/Cathode_ray_tube
https://en.wikipedia.org/wiki/PAL#PAL-B.2FG.2FD.2FK.2FI
https://en.wikipedia.org/wiki/PAL-M
https://en.wikipedia.org/wiki/PAL-N
https://en.wikipedia.org/wiki/NTSC
https://en.wikipedia.org/wiki/NTSC-J

1-Real-time clock :

The Raspberry Pi does not have a built-in real-time clock, and does not

"know" the time of day. As alternatives, a program running on the Pi can

get the time from a network time server or user input at boot time, thus

knowing the time while powered on.

A real-time hardware clock with battery backup, such as the DS1307,

which is fully binary coded, may be added (often via the I²C interface).

2-Operating systems :

The Raspberry Pi primarily uses Linux-kernel-based operating systems.

The ARM11 chip at the heart of the Pi (first generation models) is based

on version 6 of the ARM. The primary supported operating system is

Raspbian, although it is compatible with many others. The current release

of Ubuntu supports the Raspberry Pi 2, while Ubuntu, and several

popular versions of Linux, do not support the older Raspberry Pi 1 that

runs on the ARM11. Raspberry Pi 2 can also run the Windows 10 IoT

Core operating system , while no version of the Pi can run traditional

Windows.The Raspberry Pi 2 currently also supports OpenELEC and

RISC OS.

The install manager for the Raspberry Pi is NOOBS. The operating

systems included with NOOBS are:

 Arch Linux ARM

 OpenELECOSMC (formerly Raspbmc) and the Kodi open source digital

media center

 Pidora (Fedora Remix)

 Puppy Linux

 RISC OS – is the operating system of the first ARM-based computer.

 Raspbian (recommended for Raspberry Pi 1) – is maintained

independently of the Foundation; based on the Debian ARM hard-float

(armhf) architecture port originally designed for ARMv7 and later

processors (with Jazelle RCT/ThumbEE and VFPv3), compiled for the

more limited ARMv6 instruction set of the Raspberry Pi 1. A minimum

size of 4 GB SD card is required for the Raspbian images provided by the

Raspberry Pi Foundation. There is a Pi Store for exchanging programs.

 The Raspbian Server Edition is a stripped version with fewer software

packages bundled as compared to the usual desktop computer oriented

Raspbian.

https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/ARM11
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Raspbian
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://en.wikipedia.org/wiki/Windows_10_IoT_Core
https://en.wikipedia.org/wiki/Windows_10_IoT_Core
https://en.wikipedia.org/wiki/OpenELEC
https://en.wikipedia.org/wiki/RISC_OS
https://en.wikipedia.org/wiki/Arch_Linux_ARM
https://en.wikipedia.org/wiki/OpenELEC
https://en.wikipedia.org/wiki/OpenELEC
https://en.wikipedia.org/wiki/Kodi_(software)
https://en.wikipedia.org/wiki/Digital_media_receiver
https://en.wikipedia.org/wiki/Digital_media_receiver
https://en.wikipedia.org/wiki/Fedora_(operating_system)
https://en.wikipedia.org/wiki/Puppy_Linux
https://en.wikipedia.org/wiki/RISC_OS
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Debian#Architecture_ports
https://en.wikipedia.org/wiki/ARMv7
https://en.wikipedia.org/wiki/Jazelle
https://en.wikipedia.org/wiki/ARM_architecture#Floating-point_.28VFP.29
https://en.wikipedia.org/wiki/ARMv6
https://en.wikipedia.org/wiki/Gigabyte
https://en.wikipedia.org/wiki/Desktop_computer

 The Wayland display server protocol enables efficient use of the GPU for

hardware accelerated GUI drawing functions. On 16 April 2014, a GUI

shell for Weston calledMaynard was released.

 PiBang Linux – is derived from Raspbian.

 Raspbian for Robots – is a fork of Raspbian for robotics projects with

Lego, Grove, and Arduino.

Raspberry pi model 3

why firebase ?5.16

The Firebase Realtime Database is a cloud-hosted database. Data is

stored as JSON and synchronized in real time to every connected client.

When you build cross-platform apps with our iOS, Android, and

JavaScript SDKs, all of your clients share one Real time Database

instance and automatically receive updates with the newest data.

Realtime Instead of typical HTTP

requests, the Firebase Realtime

Database uses data

synchronization—every time

data changes, any connected

device receives that update

within milliseconds. Provide

collaborative and immersive

https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)
https://en.wikipedia.org/wiki/Hardware_acceleration
https://en.wikipedia.org/wiki/Maynard_(software)
https://en.wikipedia.org/wiki/Fork_(software_development)
https://en.wikipedia.org/wiki/Lego
https://en.wikipedia.org/wiki/Arduino

experiences without thinking

about networking code.

Offline Firebase apps remain responsive

even when offline because the

Firebase Realtime Database SDK

persists your data to disk. Once

connectivity is reestablished, the

client device receives any changes

it missed, synchronizing it with the

current server state.

Accessible from Client Devices The Firebase Realtime Database

can be accessed directly from a

mobile device or web browser;

there’s no need for an application

server. Security and data validation

are available through the Firebase

Realtime Database Security Rules,

expression-based rules that are

executed when data is read or

written.

Firebase Realtime Databaseplat_iosplat_androidplat_web

Store and sync data with our NoSQL cloud database. Data is synced

across all clients in realtime, and remains available when your app goes

offline.

The Firebase Realtime Database is a cloud-hosted database. Data is

stored as JSON and synchronized in realtime to every connected client.

When you build cross-platform apps with our iOS, Android, and

JavaScript SDKs, all of your clients share one Realtime Database

instance and automatically receive updates with the newest data.

How does it work?5.17

The Firebase Realtime Database lets you build rich, collaborative

applications by allowing secure access to the database directly from

client-side code. Data is persisted locally, and even while offline, realtime

events continue to fire, giving the end user a responsive experience.

When the device regains connection, the Realtime Database synchronizes

the local data changes with the remote updates that occurred while the

client was offline, merging any conflicts automatically.

The Realtime Database provides a flexible, expression-based rules

language, called Firebase Realtime Database Security Rules, to define

how your data should be structured and when data can be read from or

written to. When integrated with Firebase Authentication, developers can

define who has access to what data, and how they can access it.

The Real time Database is a NoSQL database and as such has different

optimizations and functionality compared to a relational database. The

Real time Database API is designed to only allow operations that can be

executed quickly. This enables you to build a great real time experience

that can serve millions of users without compromising on responsiveness.

Because of this, it is important to think about how users need to access

your data and then structure it accordingly.

Our Firebase Application

Our script is written in Python language .

why python ? 5.18

You may have heard that Python is gaining in popularity, but did you

know it’s now the most popular introductory teaching language in U.S.

universities? And it’s the fourth most popular language according to an

IEEE survey, behind old classics Java, C, and C++? So in celebration of

our two new Python courses — Try Python and Flying Through Python

— and the launch of our new Python technology Path, I wanted to delve

https://firebase.google.com/docs/database/web/structure-data
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://relus.com/top-10-programming-languages-to-learn-in-2016/
https://www.codeschool.com/learn/python

into why Python is useful to learn, and showcase a few companies who

use it.

Python is easy to use, powerful, and versatile, making it a great choice for

beginners and experts alike. Python’s readability makes it a great first

programming language — it allows you to think like a programmer and

not waste time understanding the mysterious syntax that other

programming languages can require. For instance, look at the following

code to print “hello world” in Java and Python.

The Dropbox desktop client is written entirely in Python, which speaks to

its cross-platform compatibility. Dropbox has about 400 million users and

considering it isn’t bundled with any operating system distribution, that’s

a lot of users downloading and installing Dropbox. In addition to their

desktop client, Dropbox’s server-side code is in Python as well, making it

the majority language used at the company.

Google uses a mix of languages, with C++, Python, and now Go among

them. Early on at Google, there was an engineering decision to use

“Python where we can, C++ where we must.” Python was used for parts

that required rapid delivery and maintenance. Then, they used C++ for

the parts of the software stack where it was important to have very low

latency and/or tight control of memory.

Like Google, Spotify and Netflix use a mix of languages. Spotify uses

Java heavily, but uses Python for things like their Web API and their

Interactive API console, which lets developers explore endpoints with an

easy-to-use interface. Spotify also uses Python for data analytics and

other non-customer facing processes, such as a DNS server recovery

system, their payment system, and their label content management

system. Netflix uses a mix of Java , Scala, and Python, and gives

developers autonomy when choosing which language fits the problem

best. Where do they use Python most? They heavily use Python and

iPython in their real-time analytics group.

If you take a look at these companies, you can see they benefit from

Python for its ease of use and because it’s great for rapid prototyping and

iteration. You can also see that Python can be used for a wide variety of

applications, and as you learn the basics of Python, you’ll be able to

create almost anything you want. Many great developers contribute daily

to the Python community by creating Python libraries. These libraries can

help you get started so that you don’t have to write code to reinvent the

wheel. So for example, if you want to do complex image processing,

https://talkpython.fm/episodes/transcript/30/python-community-and-python-at-dropbox
http://techcrunch.com/2015/06/24/dropbox-hits-400-million-registered-users/
http://stackoverflow.com/questions/2560310/heavy-usage-of-python-at-google/2561008#2561008
https://developer.spotify.com/web-api/console/
https://talkpython.fm/episodes/transcript/16/python-at-netflix
https://talkpython.fm/episodes/transcript/16/python-at-netflix

thePython Imaging Library will help you get started. Want to create

games? PyGame is a Python game engine. If data science is your thing,

SciPy is the library for you.

 The ability to (eventually) program on the Web. Increasingly, the Web

is critical to the profession and craft of programming and students should

have Web frameworks available when they’re ready.

 The ability to program desktop applications. While trends are moving

more of what we do onto the web, there’s nothing like the immediacy of

making and running your first local program.

 An eventually marketable professional skill. While academic or

recreational programming is excellent, the skills we teach should also be

usable in a professional context should students choose to use them in

that way.

 A supportive and welcoming community surrounding the language.

Once again this is crucial for those who haven’t had exposure to coding

from a young age.

The Script :5.19

The script has three functions

1)Analysis function :

It's a function that it's input is array of Electrical power in the battery

every home and it analysis these data and return the house has a more

powerful electric batteries in.

2)Buying and selling function :

It's a function tells us that what home you can sell electricity from it and

what's the price of electricity.it's input is array of Electrical power in the

battery every home and it's out put is the preferred home and the price of

electricity.

3)Restart function :

It's a function that makes the Raspberry pi restart after Buying and selling

process to make function number one start analysis the new data.it's input

is array of Electrical power in the battery every home and it's output is

json request .

http://www.pythonware.com/products/pil/
http://www.pygame.org/hifi.html
http://www.scipy.org/

Database table :20 5.

We used firebase as we said before, the table consists of clo

username password power price

Home one qwfgbgl145 10 watt 20$

Home two fsfjkfjsl5 15 watt 17$

Home three jdsjkjsk56 7 watt 10$

Home four jkdsjkluo6 12 watt 14$

Database table of DC Micro Smart Grid

What about security of firebase ?5.21

Firebase provides a flexible, expression-based rules language with

JavaScript-like syntax to easily define how your data should be structured

and when your data can be read from and written to. Combined with our

login service which allows for easy authentication, you can define who

has access to what data and keep all of your user's personal information

secure. The Security and Firebase Rules live on the Firebase servers and

are automatically enforced at all times.

*Authentication:

User identity is an important security concept. Different users have

different data, and sometimes they have different capabilities. For

example, in a chat program, each message is associated with the user that

created it. Users may also be able to delete their own messages, but not

messages posted by other users. The first step in securing your app is

often identifying your users. This process is called authentication.

Firebase provides tools for making authentication easy:

 Integrations with Facebook, GitHub, Google, and Twitter

authentication providers

 Email & password login, and account management

 Single-session anonymous login

 Custom login tokens, for integrating with your own authentication

server or SSO.

*Authorization:

Identifying your user is only part of security. Once you know who they

are, you need a way to control their access to data in your Firebase

database.

Firebase has a declarative language for specifying rules that live on the

Firebase servers and determine the security of your app

Firebase also support encryption.

How our server is connecting to our mobile application ?5.22

To make this we

 Create a Firebase account.

 Get an application URL from Firebase.

 Import the client libraries into your app. These are available for iOS,

Android, web applications, and REST.

 Call the libraries from your app, referencing the application URL.

Chapter (6):

Android

:Overview 1.6

Android powers hundreds of millions of mobile devices in more than 190

countries around the world. It's the largest installed base of any mobile

platform and growing fast—every day another million users power up

their Android devices for the first time and start looking for apps, games,

and other digital content.

Android gives you a world-class platform for creating apps and games for

Android users everywhere, as well as an open marketplace for

distributing to them instantly

:2 Introduction6.

*What is android?

Operating Systems have developed a lot in last 15 years. Starting from

black and white phones to recent smart phones or mini computers, mobile

OS has come far away. Especially for smart phones, Mobile OS has

greatly evolved from Palm OS in 1996 to Windows pocket PC in 2000

then to Blackberry OS and Android.

One of the most widely used mobile OS these days is ANDROID.

Android is a software bunch comprising not only operating system but

also middleware and key applications Android Inc. was founded in Palo

Alto of California, U.S. by Andy Rubin, Rich miner, Nick sears and Chris

White in 2003. Later Android Inc. was acquired by Google in 2005.

Android is a mobile operating system currently developed by Google,

based on the Linux and designed primarily for touchscreen mobile

devices such as smartphones and tablets. Android's user interface is

mainly based on direct manipulation, using touch gestures that loosely

correspond to real-world actions, such as swiping, tapping and pinching,

to manipulate on-screen objects, along with a virtual keyboard for text

input. In addition to touchscreen devices, Google has further developed

Android TV for televisions, Android Auto for cars, and Android Wear for

wrist watches, each with a specialized user interface. Variants of Android

are also used on notebooks, game consoles, digital cameras, and other

electronics.

Chapter 6

Android

*Why android?

:6.3 Applications

Android applications are usually developed in the Java language using the

Android Software Development Kit.Once developed, Android

applications can be packaged easily and sold out either through a store

such as Google Play.

Android offers a unified approach to application development for mobile

devices which means developers need only develop for

Android, and their applications should be able to run on different devices

powered by Android.

:Features & Specifications 6.4

Android is a powerful operating system, supporting great features. Few of

them are listed below:

1-Beautiful UI

Android's default user interface is mainly based on direct manipulation,

using touch inputs that loosely correspond to real-world actions, like

swiping, tapping, pinching, and reverse pinching to manipulate on-screen

objects, along with a virtual keyboard] Game controllers and full-size

physical keyboards are supported via Bluetooth or USB The response to

user input is designed to be immediate and provides a fluid touch

interface

2-Memory management

Since Android devices are usually battery-powered, Android is designed

to manage processes to keep power consumption at a minimum. When an

application is not in use the system suspends its operation so that, while

available for immediate use rather than closed, it does not use battery

power or CPU resources

3-Open-source community

Android has an active community of developers and enthusiasts who use

the Android Open Source Project (AOSP) source code to develop and

distribute their own modified versions of the operating system.

Android manages the applications stored in memory automatically: when

memory is low, the system will begin invisibly and automatically closing

inactive processes, starting with those that have been inactive for longs

4-Store

Android supporting a large number of applications in Smart Phones.

 These applications make life more comfortable and advanced for the

users.

Android comes with an Android market which is an online software store.

It was developed by Google.

 It allows Android users to select, and download applications developed

by third party developers and use them .

There are around 2.0 lack+ games, application and widgets available on

the market for users

5-Connectivity

GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth, Wi-Fi, LTE,

NFC and WiMAX

6-GCM

Google Cloud Messaging (GCM) is a service that lets developers send

short message data to their users on Android devices, without needing a

proprietary sync solution.

 7-Multi-tasking

User can jump from one task to another and same time various

application can run simultaneously.

8- Media support

H.263, H.264, MPEG-4 SP, AMR, AMR-WB, AAC, HE-AAC, AAC

5.1, MP3, MIDI, WAV, JPEG, PNG, GIF, and BMP

9-Resizable widgets

Widgets are resizable, so users can expand them to show more content or

shrink them to save space

:History of Android6.5

The code names of android ranges from A to L currently, such as Aestro,

Blender, Cupcake, Donut, Eclair, Froyo, Gingerbread, Honeycomb, Ice

Cream Sandwich, Jelly Bean, KitKat and Lollipop. Let's understand the

android history in a sequence.

6.6 What is API level?

API Level is an integer value that uniquely identifies the framework API

revision offered by a version of the Android platform.

Android SDK 76.

The Android software development kit (SDK) includes a comprehensive

set of development tools. These include a debugger, libraries, a handset

emulator based on QEMU, documentation, sample code, and tutorials.

The Android SDK is composed of modular packages that you can

download separately using the Android SDK Manager. For example,

when the SDK Tools are updated or a new version of the Android

platform is released, you can use the SDK Manager to quickly download

them to your environment. Simply follow the procedures described in

Adding Platforms and Packages.

There are several different packages available for the Android SDK. The

table below describes most of the available packages and where they're

located once you download them.

Available Packages6.8

 *SDK Tools

http://en.wikipedia.org/wiki/Software_development_kit
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Software_library
http://en.wikipedia.org/wiki/Emulator
http://en.wikipedia.org/wiki/QEMU

 Contains tools for debugging and testing, plus other utilities that are

required to develop an app. If you've just installed the SDK starter

package, then you already have the latest version of this package. Make

sure you keep this up to date.

 *SDK Platform-tools

 Contains platform-dependent tools for developing and debugging

your application. These tools support the latest features of the Android

platform and are typically updated only when a new platform becomes

available. These tools are always backward compatible with older

platforms, but you must be sure that you have the latest version of these

tools when you install a new SDK platform.

 *Documentation

 An offline copy of the latest documentation for the Android

platform APIs.

 *SDK Platform

 There's one SDK Platform available for each version of Android. It

includes an android.jar file with a fully compliant Android library. In

order to build an Android app, you must specify an SDK platform as your

build target.

 *System Images

 Each platform version offers one or more different system images

(such as for ARM and x86). The Android emulator requires a system

image to operate. You should always test your app on the latest version of

Android and using the emulator with the latest system image is a good

way to do so.

 *Sources for Android SDK

 A copy of the Android platform source code that's useful for

stepping through the code while debugging your app.

 *Samples for SDK

 A collection of sample apps that demonstrate a variety of the

platform APIs. These are a great resource to browse Android app code.

The API Demos app in particular provides a huge number of small demos

you should explore.

 *Google APIs

 An SDK add-on that provides both a platform you can use to

develop an app using special Google APIs and a system image for the

emulator so you can test your app using the Google APIs.

 *Android Support

 A static library you can include in your app sources in order to use

powerful APIs that aren't available in the standard platform. For example,

the support library contains versions of the Fragment class that's

compatible with Android 1.6 and higher (the class was originally

introduced in Android 3.0) and the View Pager APIs that allow you to

easily build a side-swappable UI.

 *Google Play Billing

 Provides the static libraries and samples that allow you to integrate

billing services in your app with Google Play.

 *Google Play Licensing

 Provides the static libraries and samples that allow you to perform

license verification for your app when distributing with Google Play

6.9 App components:

Application components are the essential building blocks of an Android

application. Each component is a different point through which the

system can enter your application. Not all components are actual entry

points for the user and some depend on each other, but each one exists as

its own entity and plays a specific role each one is a unique building

block that helps define your application's overall behavior.

There are different types of application components. Each type serves a

distinct purpose and has a distinct lifecycle that defines how the

component is created and destroyed.

Here are the five types of application components:

1-Activities:

An Activity is an application component that provides a screen with

which users can interact in order to do something, such as dial the phone,

take a photo, send an email, or view a map. Each activity is given a

window in which to draw its user interface. The window typically fills the

screen, but may be smaller than the screen and float on top of other

windows.

An application usually consists of multiple activities that are loosely

bound to each other. Typically, one activity in an application is specified

as the "main" activity, which is presented to the user when launching the

application for the first time. Each activity can then start another activity

https://developer.android.com/reference/android/app/Activity.html

in order to perform different actions. Each time a new activity starts, the

previous activity is stopped, but the system preserves the activity in a

stack (the "back stack"). When a new activity starts, it is pushed onto the

back stack and takes user focus. The back stack abides to the basic "last

in, first out" stack mechanism, so, when the user is done with the current

activity and presses the Back button, it is popped from the stack (and

destroyed) and the previous activity resumes. (The back stack is

discussed more in the Tasks and Back Stack document.)

When an activity is stopped because a new activity starts, it is notified of

this change in state through the activity's lifecycle callback methods.

There are several callback methods that an activity might receive, due to

a change in its state—whether the system is creating it, stopping it,

resuming it, or destroying it—and each callback provides you the

opportunity to perform specific work that's appropriate to that state

change. For instance, when stopped, your activity should release any

large objects, such as network or database connections. When the activity

resumes, you can reacquire the necessary resources and resume actions

that were interrupted. These state transitions are all part of the activity

lifecycle.

The rest of this document discusses the basics of how to build and use an

activity, including a complete discussion of how the activity lifecycle

works, so you can properly manage the transition between various

activity states

2-Services:

A Service is an application component that can perform long-running

operations in the background and does not provide a user interface.

Another application component can start a service and it will continue to

run in the background even if the user switches to another application.

Additionally, a component can bind to a service to interact with it and

even perform inter process communication (IPC). For example, a service

might handle network transactions, play music, perform file I/O, or

interact with a content provider, all from the background.

*A service can essentially take two forms:

a-Started:

A service is "started" when an application component (such as an

activity) starts it by calling startService(). Once started, a service can run

in the background indefinitely, even if the component that started it is

destroyed. Usually, a started service performs a single operation and does

not return a result to the caller. For example, it might download or upload

a file over the network. When the operation is done, the service should

https://developer.android.com/guide/components/tasks-and-back-stack.html
https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/reference/android/content/Context.html#startService%28android.content.Intent%29

stop itself.

b-Bound:

A service is "bound" when an application component binds to it by

calling bindService(). A bound service offers a client-server interface that

allows components to interact with the service, send requests, get results,

and even do so across processes with interprocess communication (IPC).

A bound service runs only as long as another application component is

bound to it. Multiple components can bind to the service at once, but

when all of them unbind, the service is destroyed.

Although this documentation generally discusses these two types of

services separately, your service can work both ways—it can be started

(to run indefinitely) and also allow binding. It's simply a matter of

whether you implement a couple callback methods: onStartCommand() to

allow components to start it and onBind() to allow binding.Regardless of

whether your application is started, bound, or both, any application

component can use the service (even from a separate application), in the

same way that any component can use an activity—by starting it with an

Intent. However, you can declare the service as private, in the manifest

file, and block access from other applications. This is discussed more in

the section about Declaring the service in the manifest.

3-Content providers:

Content providers manage access to a structured set of data. They

encapsulate the data, and provide mechanisms for defining data security.

Content providers are the standard interface that connects data in one

process with code running in another process. When you want to access

data in a content provider, you use the ContentResolver object in your

application's Context to communicate with the provider as a client. The

ContentResolver object communicates with the provider object, an

instance of a class that implements ContentProvider. The provider object

receives data requests from clients, performs the requested action, and

returns the results.You don't need to develop your own provider if you

don't intend to share your data with other applications. However, you do

need your own provider to provide custom search suggestions in your

own application. You also need your own provider if you want to copy

and paste complex data or files from your application to other

applications. Android itself includes content providers that manage data

such as audio, video, images, and personal contact information. You can

see some of them listed in the reference documentation for the

android.provider package. With some restrictions, these providers are

accessible to any Android application.

https://developer.android.com/reference/android/content/Context.html#bindService%28android.content.Intent,%20android.content.ServiceConnection,%20int%29
https://developer.android.com/reference/android/app/Service.html#onStartCommand%28android.content.Intent,%20int,%20int%29
https://developer.android.com/reference/android/app/Service.html#onBind%28android.content.Intent%29
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/guide/components/services.html#Declaring
https://developer.android.com/reference/android/content/ContentResolver.html
https://developer.android.com/reference/android/content/Context.html
https://developer.android.com/reference/android/content/ContentResolver.html
https://developer.android.com/reference/android/content/ContentProvider.html
https://developer.android.com/reference/android/provider/package-summary.html

4-Intents and intent filters:

An Intent is a messaging object you can use to request an action from

another app component. Although intents facilitate communication

between components in several ways, there are three fundamental use-

cases:

 To start an activity:

An Activity represents a single screen in an app. You can start a

new instance of an Activity by passing an Intent to startActivity().

The Intent describes the activity to start and carries any necessary

data.

If you want to receive a result from the activity when it finishes,

call startActivityForResult(). Your activity receives the result as a

separate Intent object in your activity's onActivityResult() callback.

For more information, see the Activities guide.

 To start a service:

A Service is a component that performs operations in the

background without a user interface. You can start a service to

perform a one-time operation (such as download a file) by passing

an Intent to startService(). The Intent describes the service to start

and carries any necessary data.

If the service is designed with a client-server interface, you can

bind to the service from another component by passing an Intent to

bindService(). For more information, see the Services guide.

 To deliver a broadcast:

A broadcast is a message that any app can receive. The system

delivers various broadcasts for system events, such as when the

system boots up or the device starts charging. You can deliver a

broadcast to other apps by passing an Intent to sendBroadcast(),

sendOrderedBroadcast(), or sendStickyBroadcast().

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/guide/components/fundamentals.html#Components
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#startActivity%28android.content.Intent%29
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/app/Activity.html#startActivityForResult%28android.content.Intent,%20int%29
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/app/Activity.html#onActivityResult%28int,%20int,%20android.content.Intent%29
https://developer.android.com/guide/components/activities.html
https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#startService%28android.content.Intent%29
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#bindService%28android.content.Intent,%20android.content.ServiceConnection,%20int%29
https://developer.android.com/guide/components/services.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#sendBroadcast%28android.content.Intent%29
https://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast%28android.content.Intent,%20java.lang.String%29
https://developer.android.com/reference/android/content/Context.html#sendStickyBroadcast%28android.content.Intent%29

5-Processes and Threads:

 When an application component starts and the application does not

have any other components running, the Android system starts a new

Linux process for the application with a single thread of execution. By

default, all components of the same application run in the same

process and thread (called the "main" thread). If an application

component starts and there already exists a process for that application

(because another component from the application exists), then the

component is started within that process and uses the same thread of

execution. However, you can arrange for different components in your

application to run in separate processes, and you can create additional

threads for any process.

:App Manifest6.10

Every application must have an AndroidManifest.xml file (with

precisely that name) in its root directory. The manifest file

presents essential information about your app to the Android

system, information the system must have before it can run any

pp's code. Among other things, the manifest does the of the a

following:

 It names the Java package for the application. The package name

serves as a unique identifier for the application.

 It describes the components of the application — the activities,

services, broadcast receivers, and content providers that the

application is composed of. It names the classes that implement

each of the components and publishes their capabilities (for

example, which Intent messages they can handle). These

declarations let the Android system know what the components are

and under what conditions they can be launched.

 It determines which processes will host application components.

 It declares which permissions the application must have in order to

access protected parts of the API and interact with other

applications.

 It also declares the permissions that others are required to have in

order to interact with the application's components.

 It lists the Instrumentation classes that provide profiling and other

information as the application is running. These declarations are

present in the manifest only while the application is being

developed and tested; they're removed before the application is

published.

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/app/Instrumentation.html

 It declares the minimum level of the Android API that the

application requires.

 It lists the libraries that the application must be linked against.

:Structure of the Manifest File6.11

The diagram below shows the general structure of the manifest file and

every element that it can contain. Each element, along with all of its

attributes, is documented in full in a separate file. To view detailed

information about any element, click on the element name in the diagram,

in the alphabetical list of

User Interface 6.12

All user interface elements in an Android app are built using View

and ViewGroup objects. A View is an object that draws something

on the screen that the user can interact with. A ViewGroup is an

object that holds other View (and ViewGroup) objects in order to

define the layout of the interface.

Android provides a collection of both View and ViewGroup subclasses

that offer you common input controls (such as buttons and text fields) and

various layout models (such as a linear or relative layout).

 a-User Interface Layout:

The user interface for each component of your app is defined using

a hierarchy of View and ViewGroup objects, as shown in figure 1.

Each view group is an invisible container that organizes child

views, while the child views may be input controls or other widgets

that draw some part of the UI. This hierarchy tree can be as simple

or complex as you need it to be (but simplicity is best for

performance).

https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/ViewGroup.html

Illustration of a view hierarchy, which defines a UI layout.

To declare your layout, you can instantiate View objects in code and start

building a tree, but the easiest and most effective way to define your

layout is with an XML file. XML offers a human-readable structure for

the layout, similar to HTML.

The name of an XML element for a view is respective to the Android

class it represents. So a <TextView> element creates a TextView widget

in your UI, and a <LinearLayout> element creates a LinearLayout view

group.

For example, a simple vertical layout with a text view and a button looks

like this:

https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/widget/LinearLayout.html

When you load a layout resource in your app, Android initializes each node

of the layout into a runtime object you can use to define additional

behaviors, query the object state, or modify the layout.

b-User Interface Component:

You don't have to build all of your UI using View and ViewGroup

objects. Android provides several app components that offer a

standard UI layout for which you simply need to define the

content. These UI components each have a unique set of APIs that

are described in their respective documents, such as Adding the

App Bar, Dialogs, and Status Notifications.

c- Layouts:

A layout defines the visual structure for a user interface, such as the UI

for an activity or app widget. You can declare a layout in two ways:

 Declare UI elements in XML. Android provides a straightforward

XML vocabulary that corresponds to the View classes and

subclasses, such as those for widgets and layouts.

 Instantiate layout elements at runtime. Your application can create

View and ViewGroup objects (and manipulate their properties)

programmatically.

The Android framework gives you the flexibility to use either or both of

these methods for declaring and managing your application's UI. For

example, you could declare your application's default layouts in XML,

including the screen elements that will appear in them and their

properties. You could then add code in your application that would

modify the state of the screen objects, including those declared in XML,

at run time.

The advantage to declaring your UI in XML is that it enables you to

better separate the presentation of your application from the code that

controls its behavior. Your UI descriptions are external to your

application code, which means that you can modify or adapt it without

having to modify your source code and recompile. For example, you can

create XML layouts for different screen orientations, different device

screen sizes, and different languages. Additionally, declaring the layout in

XML makes it easier to visualize the structure of your UI, so it's easier to

debug problems. As such, this document focuses on teaching you how to

declare your layout in XML. If you're interested in instantiating View

objects at runtime, refer to the ViewGroup and View class references.

https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/training/appbar/index.html
https://developer.android.com/training/appbar/index.html
https://developer.android.com/guide/topics/ui/dialogs.html
https://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://developer.android.com/guide/components/activities.html
https://developer.android.com/guide/topics/appwidgets/index.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/reference/android/view/View.html

In general, the XML vocabulary for declaring UI elements closely

follows the structure and naming of the classes and methods, where

element names correspond to class names and attribute names correspond

to methods. In fact, the correspondence is often so direct that you can

guess what XML attribute corresponds to a class method, or guess what

class corresponds to a given XML element. However, note that not all

vocabulary is identical. In some cases, there are slight naming

differences. For example, the EditText element has a text attribute that

corresponds to EditText.setText().

d- Input controls:

Input controls are the interactive components in your app's user interface.

Android provides a wide variety of controls you can use in your UI, such

as buttons, text fields, seek bars, checkboxes, zoom buttons, toggle

buttons, and many more.

Adding an input control to your UI is as simple as adding an XML

element to your XML layout. For example, here's a layout with a text

field and button:

Each input control supports a specific set of input events so you can

handle events such as when the user enters text or touches a button.

*Common Controls:

Here's a list of some common controls that you can use in your app.

Follow the links to learn more about using each one.

https://developer.android.com/guide/topics/ui/declaring-layout.html

e-Dialogs:

A dialog is a small window that prompts the user to make a decision or

enter additional information. A dialog does not fill the screen and is

normally used for modal events that require users to take an action before

they can proceed.

Building an Alert Dialog:*

The AlertDialog class allows you to build a variety of dialog designs and

is often the only dialog class you'll need. As shown in figure 2, there are

three regions of an alert dialog:

https://developer.android.com/reference/android/app/AlertDialog.html

1. Title

This is optional and should be used only when the content area is

occupied by a detailed message, a list, or custom layout. If you

need to state a simple message or question (such as the dialog in

figure 1), you don't need a title.

2. Content area

This can display a message, a list, or other custom layout.

3. Action buttons

There should be no more than three action buttons in a dialog.

The AlertDialog.Builder class provides APIs that allow you to create an

AlertDialog with these kinds of content, including a custom layout.

*To build an AlertDialog:

https://developer.android.com/reference/android/app/AlertDialog.Builder.html
https://developer.android.com/reference/android/app/AlertDialog.html
https://developer.android.com/reference/android/app/AlertDialog.html

f-Notifications:

 A notification is a message you can display to the user outside of

your application's normal UI. When you tell the system to issue a

notification, it first appears as an icon in the notification area. To see the

details of the notification, the user opens the notification drawer. Both

the notification area and the notification drawer are system-controlled

areas that the user can view at any time.

 *Design Considerations:

Notifications, as an important part of the Android user interface, have

their own design guidelines. The material design changes introduced in

Android 5.0 (API level 21) are of particular importance, and you should

review the Material Design training for more information. To learn how

to design notifications and their interactions, read the Notifications design

guide.

Creating a Notification

You specify the UI information and actions for a notification in a

NotificationCompat.Builder object. To create the notification itself, you

call NotificationCompat.Builder.build(), which returns a Notification

object containing your specifications. To issue the notification, you pass

the Notification object to the system by calling

NotificationManager.notify().

Required notification contents

A Notification object must contain the following:

 A small icon, set by setSmallIcon()

 A title, set by setContentTitle()

 Detail text, set by setContentText()

https://developer.android.com/training/material/index.html
https://developer.android.com/design/patterns/notifications.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html#build%28%29
https://developer.android.com/reference/android/app/Notification.html
https://developer.android.com/reference/android/app/Notification.html
https://developer.android.com/reference/android/app/NotificationManager.html#notify%28int,%20android.app.Notification%29
https://developer.android.com/reference/android/app/Notification.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html#setSmallIcon%28int%29
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html#setContentTitle%28java.lang.CharSequence%29
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html#setContentText%28java.lang.CharSequence%29

g-Toasts:

A toast provides simple feedback about an operation in a small popup. It

only fills the amount of space required for the message and the current

activity remains visible and interactive. For example, navigating away

from an email before you send it triggers a "Draft saved" toast to let you

know that you can continue editing later. Toasts automatically disappear

after a timeout.

*The Basics:

First, instantiate a Toast object with one of the makeText() methods. This

method takes three parameters: the application Context, the text message,

and the duration for the toast. It returns a properly initialized Toast object.

You can display the toast notification with show(), as shown in the

following example:

This example demonstrates everything you need for most toast

notifications. You should rarely need anything else. You may, however,

want to position the toast diferently or even use your own layout instead of

a simple text message.

https://developer.android.com/reference/android/widget/Toast.html
https://developer.android.com/reference/android/widget/Toast.html#makeText%28android.content.Context,%20int,%20int%29
https://developer.android.com/reference/android/content/Context.html
https://developer.android.com/reference/android/widget/Toast.html#show%28%29

:Firebase6.13

a powerful platform for building iOS, Android, and web-based apps,

offering real-time data storage and synchronization, user authentication,

and more.

With Firebase, you can store and sync data to a NoSQL cloud database.

The data is stored as JSON, synced to all connected clients in real time,

and available when your app goes offline. It offers APIs that enable you

to authenticate users with email and password, Facebook, Twitter,

GitHub, Google, anonymous auth, or to integrate with existing

authentication system. It also offers hosting for static assets and offers

SSL certificates.

Chapter (7):

Conclusion

7.1 General Conclusion

A DC Micro Smart Grid consists of interconnected distributed energy

resources capable of providing sufficient and continuous energy to a

significant portion of internal load demand. With the strong incentives of

green and free energy sources and advancement of battery technology,

power generation is not just solely relied on coal-fired or gas-fired power

plants but everyone can produce their own electricity from these energy

sources to power their own loads to certain power level. Many of these

sources and applications are of dc nature but today’s electricity

infrastructure is still based on ac. Therefore there are “unnecessary power

processing stages to handle the power generation to the user (i.e. dc to ac

and back to dc again)”. In addition, the smart use of power electronics

converters can help electricity users lower the generation cost and optimize

the system efficiency.

In our Project we aimed to achieve these characteristics:

1- Smart: controls the power consumption and offers solutions

to save or buy power, all this is dependent on IOT, and by

making a mobile application to monitor all data to help

consumer in taking descisions.

2- Real time calibrated: provides a continuous updating with the

new information about loads, so this helps in specifying

resources of power and hence a fast response from customer.

3- Profitable: Selling your excess power and earn money from

your grid.

4- Islanded or parallel: It can be operated independently of the

utility grid or parallel to it.

5- Renewable: By using solar cells.

There are some Challenges that DC Micro smart grid is suffering from

like:

• Increased variability and uncertainty on both demand and supply at

distribution levels.

• Bidirectional power flows due to high penetration of distributed

resources.

• More frequent outages with high severity caused by extreme weather.

• Increased complexity introduced by voluminous data streams and big

data management

• Interoperability between new technologies and with legacy

components.

• Secure communications.

:Future Work7.2

There is a control unit that is Responsible for distributing power.-1

2-The ability to measure the sold and purchased power.

3-Data could be transmitted wirelessly.

4-The ability of mobile application to control the state of loads directly by

Bluetooth.

- DC Microgrids Scoping Study,

Estimate of Technical and Economic Benefits, March 2015.

- Boonton, Ch1: power measurement Basics.

- Boonton, Ch3: power measurement techniques.

- RS-232, RS-422, RS-485 Serial Communication General Concepts:

http://www.ni.com/white-paper/11390/en/

- Basics of the RS-485 Standard:

http://www.bb-elec.com/Learning-Center/All-White-

Papers/Serial/Basics-of-the-RS-485-Standard.aspx

- MAX487 - MAX487 RS485/RS422 Transceivers Technical Data:

http://www.futurlec.com/Maxim/MAX487.shtml

- MikroC PRO for PIC Libraries, Hardware Libraries, RS-485 Library.

- Introduction to I²C and SPI protocols:

-spi-and-i2c-to-http://www.byteparadigm.com/applications/introduction

protocols/

-I2C what is that?

bus.org-http://www.i2c/

-18f4620 Datasheet:

http://ww1.microchip.com/downloads/en/DeviceDoc/39626e.pdf

16f877A Datasheet: -

teaching/info/mechatronica/PIC16F87XA.pdfhttp://mech.vub.ac.be/

http://dpnm.postech.ac.kr/cs490/Programming_the_Raspberry_Pi.pdf -

https://www.raspberrypi.org/ -

https://en.wikipedia.org/wiki/Raspberry_Pi -

-gpio-4-lesson-pi-raspberry-ruit.com/adafruitshttps://learn.adaf

i2c-setup/configuring -

-Comer, Douglas E.; Stevens, David L. (1993).

(Cambridge).Raspberry Pi FoundationUpton, Liz (2 April 2014). -

-Richard A. Henle, Boris W. Kuvshinoff, C. M. Kuvshinoff (1992).

References

http://www.ni.com/white-paper/11390/en/
http://www.bb-elec.com/Learning-Center/All-White-Papers/Serial/Basics-of-the-RS-485-Standard.aspx
http://www.bb-elec.com/Learning-Center/All-White-Papers/Serial/Basics-of-the-RS-485-Standard.aspx
http://www.futurlec.com/Maxim/MAX487.shtml
http://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-protocols/
http://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-protocols/
http://ww1.microchip.com/downloads/en/DeviceDoc/39626e.pdf
http://mech.vub.ac.be/teaching/info/mechatronica/PIC16F87XA.pdf
http://dpnm.postech.ac.kr/cs490/Programming_the_Raspberry_Pi.pdf
https://www.raspberrypi.org/
https://en.wikipedia.org/wiki/Raspberry_Pi
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
https://en.wikipedia.org/wiki/Raspberry_Pi_Foundation

"Raspberry Pi Compute Module Adams, James (3 April 2014). -

(PDF). Raspberry Pi Foundation. iagram"electrical schematic d

en/-http://www.ibm.com/us -

.Alexa Internet. "Firebase.com Site Info"

https://developer.android.com/index.html -

- Smart Grid R&D Program Peer Review Meeting 2014, Smart Grid

R&D Program Overview, Dan Ton Acting Deputy Assistant Secretary

Power Systems Engineering, June 11, 2014.

- Smart DC Micro-grid for Effective Utilization of Solar Energy D Ravi

Prasad, Dr B.Rajesh Kamath, K.R Jagadisha, S.K Girish, International

Journal of Scientific & Engineering Research Volume 3, Issue 12,

December-2012 1 ISSN 2229-5518.

http://www.raspberrypi.org/documentation/hardware/computemodule/RPI-CM-V1_1-SCHEMATIC.pdf
http://www.raspberrypi.org/documentation/hardware/computemodule/RPI-CM-V1_1-SCHEMATIC.pdf
http://www.ibm.com/us-en/
https://en.wikipedia.org/wiki/Alexa_Internet
http://www.alexa.com/siteinfo/firebase.com
https://developer.android.com/index.html

